Chapter 8

Stress Energy Tensor

8.1 Conservation of energy in classical mechan-
ics

Let us consider a classical system with 1 degree of freedom, described by the

generalized coordinate g. Let the system admit a Lagrangian formulation, and

let L (q, %, t) be the Lagrangian of the system. In terms of the Lagrangian the

dynamics of the system is described by the Euler-Lagrange equations, i.e.
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We now make the additional hypothesis that the Lagrangian does not ex-
plicitly depend on the time t, i.e. mathematically that
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In this case we have
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Between the second and the third line we have used our hypothesis that the
Lagrangian does not depend explicitly from the parameter ¢ and in the last
equality we have used that the equations of motion are satisfied. We thus get

the equality
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Thus if the Lagrangian does not depend explicitly on time, the quantity

ie.
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is an integral of the motion®

8.2 Conservation laws in a special relativistic
field theory

Let us consider a theory consisting of N fields {¢(i)}¢:1,...,N, described by the
Lagrangian density £(z*,¢(", 8,¢U)). The dynamics of the theory is described
by the Euler-Lagrange equations,
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Let us now make the additional hypothesis that the Lagrangian does not depend
explicitly from z*, i.e.
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In this case we have
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Again we remember our hypothesis that the dependence of £ from x* is only
through the fields ¢(* and their derivatives in the first line. We then use the

I Actually, if we remember that
oL

= 8711
we see that the conserved quantity is just the Hamiltonian of the system,

H=pj— L.
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field equations in the second line. The final result is then
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or, which is the same,
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where we have defined
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Definition 8.1 (Stress Energy Tensor)
Let us consider a Field Theory consisting of N fields ¢ in n dimensions,
that admits a Lagrangian formulation in terms of a Lagrangian density L. The

quantity
1,N
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is called the Stress-Energy tensor of the fields.

Proposition 8.1 (Local conservation laws)

If in the Lagrangian formulation of a field theory of N fields 9 inn dimensions
the Lagrangian density does mot depend explicitly on the coordinates, the the
stress-enerqy tensor is locally conserved,

9T =0

i.e. its divergence is zero.
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