
Chapter 8

Stress Energy Tensor

8.1 Conservation of energy in classical mechan-
ics

Let us consider a classical system with 1 degree of freedom, described by the
generalized coordinate q. Let the system admit a Lagrangian formulation, and
let L

(
q, dq

dt , t
)

be the Lagrangian of the system. In terms of the Lagrangian the
dynamics of the system is described by the Euler-Lagrange equations, i.e.

d

dt

(
∂L

∂q̇

)
=
∂L

∂q

We now make the additional hypothesis that the Lagrangian does not ex-
plicitly depend on the time t, i.e. mathematically that

partialL

∂t
= 0.

In this case we have

dL

dt
=

∂L

∂q
q̇ +

∂L

∂q̇
q̈ +

∂L

∂t

=
∂L

∂q
q̇ +

∂L

∂q̇
q̈

=
d

dt

(
∂L

∂q̇

)
q̇ +

∂L

∂q̇
q̈

=
d

dt

(
∂L

∂q̇
q̇

)
. (8.1)

Between the second and the third line we have used our hypothesis that the
Lagrangian does not depend explicitly from the parameter t and in the last
equality we have used that the equations of motion are satisfied. We thus get
the equality

dL

dt
=

d

dt

(
∂L

∂q̇
q̇

)
,
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i.e.
d

dt

(
q̇
∂L

∂q̇
− L

)
= 0.

Thus if the Lagrangian does not depend explicitly on time, the quantity

q̇
∂L

∂q̇
− L

is an integral of the motion1

8.2 Conservation laws in a special relativistic
field theory

Let us consider a theory consisting of N fields {φ(i)}i=1,...,N , described by the
Lagrangian density L(xµ, φ(i), ∂νφ

(j)). The dynamics of the theory is described
by the Euler-Lagrange equations,

∂µ

(
∂L

∂(∂µφ(i))

)
=

∂L
∂φ(i)

i = 1, . . . , N.

Let us now make the additional hypothesis that the Lagrangian does not depend
explicitly from xµ, i.e.

∂L
∂xµ

= 0.

In this case we have

∂νL =
1,N∑

i

∂L
∂φ(i)

∂νφ
(i) +

1,N∑
i

∂L
∂(∂µφ(i))

∂ν∂µφ
(i)

=
1,N∑

i

∂µ

(
∂L

∂(∂µφ(i))

)
∂νφ

(i) +
1,N∑

i

∂L
∂(∂νφ(i))

∂µ∂νφ
(i)

=
1,N∑

i

[
∂µ

(
∂L

∂(∂µφ(i))

)
(∂νφ

(i)) +
∂L

∂(∂νφ(i))
∂µ(∂νφ

(i))
]

=
1,N∑

i

∂µ

(
∂L

∂(∂µφ(i))
(∂νφ

(i))
)

= ∂µ

1,N∑
i

(
∂L

∂(∂µφ(i))
(∂νφ

(i))
)
. (8.2)

Again we remember our hypothesis that the dependence of L from xµ is only
through the fields φ(i) and their derivatives in the first line. We then use the

1Actually, if we remember that

p =
∂L

∂q̇

we see that the conserved quantity is just the Hamiltonian of the system,

H = pq̇ − L.
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field equations in the second line. The final result is then

δµ
ν ∂µL = ∂µ

1,N∑
i

(
∂L

∂(∂µφ(i))
(∂νφ

(i))
)
,

or, which is the same,

∂µ(δµ
νL) = ∂µ

1,N∑
i

(
∂L

∂(∂µφ(i))
(∂νφ

(i))
)
,

so that
∂µT

µ
ν = 0,

where we have defined

Tµ
ν =

1,N∑
i

(
∂L

∂(∂µφ(i))
(∂νφ

(i))
)
− δµ

νL.

Definition 8.1 (Stress Energy Tensor)
Let us consider a Field Theory consisting of N fields φ(i) in n dimensions,
that admits a Lagrangian formulation in terms of a Lagrangian density L. The
quantity

Tµ
ν =

1,N∑
i

(
∂L

∂(∂µφ(i))
(∂νφ

(i))
)
− δµ

νL

is called the Stress-Energy tensor of the fields.

Proposition 8.1 (Local conservation laws)
If in the Lagrangian formulation of a field theory of N fields φ(i) in n dimensions
the Lagrangian density does not depend explicitly on the coordinates, the the
stress-energy tensor is locally conserved,

∂µT
µ
ν = 0,

i.e. its divergence is zero.
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