
Chapter 7

Special Relativity:
Problems

7.1 Kinematics

Problem 7.1 (Relation between 4- and 3-velocity)
Let us consider the 4-velocity u corresponding to an ordinary 3-velocity ~v. How
can we write:

1. u0 as a function of |~v|?

2. uj as a function of ~v?

3. u0 as a function of uj?

4. d/dτ as a function of d/dt and ~v?

5. vj as a function of uj?

6. |~v| as a function of u0?

Solution:

We remember that the 4-velocity u is defined as

u =
dx

dτ
,

where x = (ct, ~x) and

−dτ2 = ds2 = −c2dt2 + d~x2.

Thus

dτ2 = c2dt2
(

1− 1

c2
d~x2

dt2

)
and

dτ = cdt

(
1− 1

c2
d~x2

dt2

)1/2

= cdt

(
1− ~v2

c2

)1/2
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= cdt

(
1− |~v|

2

c2

)1/2

=
c

γ
dt, (7.1)

where

γ =
1(

1− |~v|
2

c2

)1/2
. (7.2)

Thus

u =
γ

c

d

dt
(ct, ~x) =

γ

c

(
c,
d~x

dt

)
=

(
γ, γ

~v

c

)
, (7.3)

and

〈u,u〉 = ηµνu
µuν = −γ2 + γ2 |~v|2

c2
= −γ2

(
1− |~v|

2

c2

)
= −1 (7.4)

With these preliminary definitions we can attack the other points.

1. This comes directly from (7.2) and (7.3), since

u0 = γ =
1(

1− |~v|
2

c2

)1/2
.

2. Again, from (7.3) we obtain,

uj = γ
vj

c
=

vj

(c2 − |~v|2)1/2
=

vj

(c2 − vivi)1/2
.

3. This relation comes from the fact that the modulus of the
four velocity is −1 (equation (7.4)). Thus

−1 = 〈u,u〉 = −(u0)2 + ujuj

and

u0 = (1 + ujuj)
1/2. (7.5)

4. This result comes directly from (7.1) and, indeed, it has
already been used in (7.3):

d

dτ
=
γ

c

d

dt
=

1

c

(
1− |~v|

2

c2

)1/2

d

dt
.

5. We start from the definition of the 4-velocity and observe
that

vj =
c

γ
uj =

c

u0
uj ;

then from the result found in 3., we obtain

vj =
cuj(

1 + uku
k
)1/2

.
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6. This last result can be obtained from the previous one and
from (7.5)

|~v| = (vjvj)
1/2

= c

(
ujuj

1 + ukuk

)1/2

=
c

u0

(
(u0)2 − 1

)1/2
.

It could be useful for the reader to rewrite these results in the units in

which c ≡ 1.

�

Problem 7.2 (4-acceleration)
Let us consider the 4-acceleration a of a given observer. Show that it has only
three independent components. What is the relation of these components with
the components of the ordinary acceleration ~a, i.e. with the components of the
acceleration measured by the observer in his local frame of reference with a “New-
tonian accelerometer”? How can be written, in intrinsic form, the acceleration
measured in the reference system of the observer?

Solution:

The 4-acceleration is defined as

a =
du

dτ
,

where u is the 4-velocity of the observer. Since

〈u,u〉 = −1

it follows that

0 =
d

dτ
〈u,u〉 =

〈
du

dτ
,u

〉
+

〈
u,
du

dτ

〉
= 2 〈a,u〉 ,

so that the 4-acceleration is always orthogonal to the 4-velocity. Now
think at an observer subjected to a 4-acceleration: its velocity is chang-
ing with time, i.e. it is not constant in any inertial frame. On the other
hand, at a given instant of time, we can always find an inertial frame
which has the same velocity as the observer: this is called a locally co-
moving frame, where the word “locally” emphasizes that it is comoving
only at a given instant of time, i.e. at a given place along the trajectory
of the observer. In this frame the observer has 4-velocity û = (−1,~0),
and the orthogonality condition reads

0 = 〈a,u〉 =
〈
(a0,~a), (−1, 0)

〉
= −a0

so that it implies a0 = 0 and ai arbitrary.
A Newtonian accelerometer could be obtained by letting the observer

release a particle in the comoving frame and seeing how much velocity
d~v the observer gains relative to it in a short time dτ . Then we could
compute ~a = d~v/dτ . Of course the particle is really stationary in the
momentarily comoving inertial frame and we accelerate relative to it by
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an amount duj = ajdτ . Differentiating the expression for uj in terms of
vj and setting ~v = 0, we obtain

ajNew = aj .

Thus the 3 independent components of the 4-acceleration in a comoving
frame are just the 3-Newtonian acceleration. Moreover, since 〈a,u〉 = 0
and in the observer local rest frame

a = (0, âj),

with âj the j-th component of the locally measured acceleration, then
the squared magnitude of his locally measured acceleration is

a2 = âj âj =
〈
(0, âj), (0, âj)

〉
= 〈a,a〉 .

�

Problem 7.3 Let us consider two Lorentz transformations:

1. a boost with velocity vx in the x direction;

2. a boost with velocity vy in the y direction.

What is the Lorentz matrix associated to the composition of the two transfor-
mations in the order given above? And what the Lorentz matrix if we invert the
order?

Solution:

We write the Lorentz boost with velocity vx along the x-axis:
ct′ = γx(ct− βxx)
x′ = γx(x− βxct)
y′ = y
z′ = z

,

where βx = vx/c and γx = (1 − β2
x)
−1/2. If we set x0 = ct, x1 = x,

x2 = y and x3 = z and the same for primed quantities, then the above
transformation can be written x′µ =(Λx)

µ
νx

ν , with1

(Λx)
µ
ν =


γx −γxβx 0 0
−γxβx γx 0 0

0 0 1 0
0 0 0 1

 .

If we instead consider a Lorentz boost with velocity vy along the y axis,
then, with analogous definitions and conventions,

ct′ = γy(ct− βyy)
x′ = x
y′ = γy(y − βyct)
z′ = z

,

1The symbol used here for the transformation matrix, (Λx)µν , can be related with the one
used in changing the basis vectors, as in problem 4.1: in particular, if we set (Λx) ≡ Λ, we
can write Λµν =(Λ−1)νµ.
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which is thus associated to the matrix

(Λy)
µ
ν =


γy 0 −γyβy 0
0 1 0 0

−γyβy 0 γy 0
0 0 0 1

 .

If we first perform the boost in the x direction and then the one in the
y direction, the associated matrix is

Λxy = ΛyΛx

=


γx −γxβx 0 0
−γxβx γx 0 0

0 0 1 0
0 0 0 1




γy 0 −γyβy 0
0 1 0 0

−γyβy 0 γy 0
0 0 0 1



=


γxγy −γxβx −γxγyβy 0
−γxγyβx γx γxγyβxβy 0
−γyβy 0 γy 0

0 0 0 1

 .

Performing the transformations in the reverse order,

Λyx = ΛxΛy

=


γy 0 −γyβy 0
0 1 0 0

−γyβy 0 γy 0
0 0 0 1




γx −γxβx 0 0
−γxβx γx 0 0

0 0 1 0
0 0 0 1



=


γxγy −γxγyβx −γyβy 0
−γxβx γx 0 0
−γxγyβy γxγyβxβy γy 0

0 0 0 1

 , (7.6)

and we see that Λxy 6= Λyx.

�

Problem 7.4 Let us consider two events S1 and S2 separated by a spacelike
interval. Show that there exists a Lorentz frame where the two events are simul-
taneous, but there exists no Lorentz frame where the two events happen in the
same place.
Let us then consider two events T1 and T2 separated by a timelike interval. Show
that there exists a Lorentz frame where the two events happen in the same place,
but there exists no Lorentz frame where the two events are simultaneous.

Solution:

Let us consider S1 (x0, x1, x2, x3) and S2 (x0+∆x0, x1+∆x1, x2+∆x2,
x3 + ∆x3), so that their spacelike separation can be written as:

∆s2 = −(∆x0)2 + (∆x1)2 + (∆x2)2 + (∆x3)2 = −c2∆t2 + ∆l2 = k2 > 0.

In another Lorentz frame, since the interval is invariant under Lorentz
transformations, we have

0 < k2 = −c2(∆t′)2 + (∆l′)2; (7.7)
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if in this new reference frame the two events have to be simultaneous,
then we must have ∆t′ = 0, which is consistent with equation (7.7) and
shows that in this frame the two events will be separated by a distance
∆l′ = k. On the other hand in no Lorentz frame the two events can
happen in the same place. Indeed, this would imply ∆l′ = 0 and thus
from (7.7)

−c2(∆t′)2 > 0,

which is impossible for real ∆t′.

If the two events, now called T1 (x0, x1, x2, x3) and T2 (x0 + ∆x0,
x1 + ∆x1, x2 + ∆x2, x3 + ∆x3), are timelike separated this implies

−c2∆t2 + ∆l2 = −k2 < 0

and after a Lorentz transformation, again for the invariance of the in-
terval,

0 > −k2 = −c2(∆t′)2 + (∆l′)2. (7.8)

Now the simultaneity of the two events, ∆t′ = 0, is in contrast with

equation (7.8) and ∆l′ ∈ R. On the other hand the two events can now

happen at the same place. In this case ∆l′ = 0 gives no troubles in

(7.8) and ∆t′ = k/c is the time that an observer in this frames measures

between the two events.

�

Problem 7.5 Let us consider an observer which is at rest in the origin of a
reference frame. Show in a diagram the set of all events which are simultaneous
with him at the instant t = 0. Then, let us consider another observer, which
translates uniformly and with velocity v with respect to the first one. Add to
the previously drawn diagram his worldline and the set of all events which are
simultaneous with him at t = 0.

Solution:

See figure 7.1.

�

Problem 7.6 Write the metric tensor and the connection symbols for:

1. Minkowski spacetime in cartesian coordinates;

2. Minkowski spacetime in polar coordinates;

3. a spherical surface in spherical coordinates.

Solution:

As a premise, let us remember that equation (3.21), which gives the
connection coefficients in terms of the metric, is not the most efficient
way to compute them. We will anyway use that result, as well as the
one obtained in problem 7.7.
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Figure 7.1: World lines and surfaces of simultaneity of observer in relative transla-
tional motion with constant velocity.

1. The metric tensor for Minkowski spacetime in cartesian
coordinates is

gµν = ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = ηµν

and is constant. Thus all derivatives of the metric are
vanishing and so are all the connection coefficients: Γλµν ≡
0.

2. In polar coordinates the Minkowski spacetime line element
can be written as

ds2 = gµνdx
µ ⊗ dxν

= −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2

= −dt2 + dr2 + r2dΩ2,

where it is customary to denote with dΩ2 the element of
solid angle

dΩ2 = dθ2 + sin2 θdφ2.

The metric tensor can then be written as

gµν =


−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 ,
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with inverse

gµν =


−1 0 0 0
0 1 0 0
0 0 r−2 0
0 0 0 r−2 sin−2 θ


and we are in a coordinate basis. All the connection coef-
ficients with three different indices vanish, in view of the
results of problem 7.7. Those results also imply that, since
the metric is static i.e. no time dependence appears, all
time derivatives of the metric coefficients vanish and thus
Γ0
µ(µ), Γλ(λ)0 also vanish. Moreover, g00 and g11 are con-

stant, so that all their derivatives vanish and with them
Γλ00, Γλ11, Γ0

0ν , Γ1
1ν . The metric coefficients are also inde-

pendent from φ, i.e. all derivatives of the metric coeffi-
cients with respect to x3 vanish, so that Γ3

µ(µ) = Γλ(λ)3 = 0.
Using the fact that in a coordinate basis the connection
coefficients are symmetric, we have to compute the only
non-vanishing coefficients Γ1

22, Γ1
33, Γ2

12, Γ2
33, Γ3

13, Γ3
23. Us-

ing again the results of problem 7.7, we obtain

Γ1
22 = −r Γ1

33 = −r sin2 θ

Γ2
12 =

1

r
Γ2

33 = − sin θ cos θ

Γ3
13 =

1

r
Γ3

23 = cot θ. (7.9)

3. We consider a spherical surface and adopt spherical coor-
dinates:

ds2 = dθ2 + sin2 θdφ2,

so that the metric is

gµν =

(
1 0
0 sin2 θ

)
, gµν =

(
1 0
0 sin−2 θ

)
, µ, ν = 2, 3

and we choose the natural coordinate basis. The metric is
diagonal and φ independent, the connection coefficient are
symmetric: we again will use the results of problem 7.7 to
compute the non-vanishing elements, Γ2

33 and Γ3
23:

Γ2
33 = − sin θ cos θ Γ3

23 = cot θ (7.10)

Note that the coefficients of 3. are the same as the angular part of 2..

�

Problem 7.7 Let us consider a diagonal metric in a coordinate basis. Show
that:

Γλ
µν = 0 if λ 6= µ 6= ν 6= λ;

Γλ
µ(µ) = − 1

2g(λ)(λ)
∂λgµ(µ) with λ 6= µ;

Γλ
(λ)ν = ∂ν(log |gλ(λ)|1/2) with λ 6= ν;
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Γλ
(λ)(λ) = ∂(λ)(log |g(λ)λ|1/2).

Solution:

As a preliminary observation we observe that if a matrix is diagonal
and non-singular,

Aµν =


♥ 0 0 0
0 ♦ 0 0
0 0 ♣ 0
0 0 0 ♠

 ,

then its inverse is easily found

Aµν =


♥−1 0 0 0

0 ♦−1 0 0
0 0 ♣−1 0
0 0 0 ♠−1

 .

For our diagonal metric this means gµ(µ) = (g(µ)µ)
−1. Now we attack

the computation of the connection coefficients using their definition in
a coordinate basis

Γλµν =
1

2
gλα(−∂αgµν + ∂µgνα + ∂νgαµ).

Since the metric is diagonal the summed index α must equal λ if we do
not want a null factor in front of the round bracket, i.e. at most one
term in the sum survives:

Γλµν =
1

2
gλ(λ)(−∂(λ)gµν + ∂µgν(λ) + ∂νg(λ)µ).

We thus see that if λ 6=µ 6=ν 6=λ, then in the round brackets all the
g’s are non-diagonal elements of the metric, i.e. they are null. Thus
Γλµν = 0 if λ 6=µ 6=ν 6=λ. Since we have established that non-vanishing
results require some of the three indices to be equal, we only need to
analyze all these possibilities in turn:

µ = ν 6= λ: in this case only the first term in round brackets sur-
vives, and we have

Γλµ(µ) = −1

2
gλ(λ)∂(λ)gµ(µ)

= − 1

2gλ(λ)

∂(λ)gµ(µ).

λ = µ 6= ν: now the last term in round brackets survives and we
have

Γ
(λ)
λν = Γ

(λ)
νλ =

1

2
gλ(λ)∂νg(λ)(λ)

=
1

2

1

gλ(λ)

∂νg(λ)(λ)

=
1

2
∂ν log |gλ(λ)|

= ∂ν log(|gλ(λ)|1/2).
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λ = µ = ν: all three terms in round brackets now contribute, but
two of them are opposite; thus we obtain

Γλ(λ)(λ) =
1

2
g(λ)(λ)∂λg(λ)(λ)

=
1

2

1

g(λ)(λ)

∂λg(λ)(λ)

=
1

2
∂λ log |g(λ)(λ)|

= ∂λ log(|g(λ)(λ)|1/2).

We remember that indices in round brackets are not summed over!

�

Problem 7.8 Show that the character of a geodesic cannot change along its
path.

Solution:

These is nothing but a consequence of the compatibility condition of the
covariant derivative with the metric. Indeed if σ is a geodesic and σ̇ its
tangent vector, from the definition of geodesic we know that Dσ̇/dt = 0,
i.e. σ̇ is parallel along σ. Thus if we consider 〈σ̇, σ̇〉 we have

d

dt
〈σ̇, σ̇〉 =

〈
Dσ̇

dt
, σ̇

〉
+

〈
σ̇,
Dσ̇

dt

〉
= 2

〈
Dσ̇

dt
, σ̇

〉
= 〈0, σ̇〉 = 0

so that if the tangent vector is timelike/spacelike/null at one point (i.e.

if the geodesic is timelike/spacelike/null at one point) it remains time-

like/spacelike/null at all other points.

�

Problem 7.9 Let us consider a 2-sphere,

ds2 = dθ2 + sin2 θdφ2,

and a vector A which is A = eθ at the point (θ = θ0, φ = 0). How does A
change after a parallel transport along θ = θ0? How does its modulus change?

Solution:

Let us consider the vector A = eθ. Since it is parallel propagated along
a line θ = const., then it is parallel propagated in the eφ direction (i.e
we can consider parallel propagation along the curve θ = θ0, φ ∈ [0, 2π],
with tangent vector eφ). The local condition for parallel propagation
can be written as

D(eφ,A) = 0⇐⇒ Aj ;φ = ∂φA
j + ΓjkφA

k = 0.

The only non-vanishing connection coefficients, calculated in problem
7.6, are Γθφφ and Γφθφ, so the equation above (set {j, k}={θ, φ}) gives

∂φA
θ − sin θ cos θAφ = 0

∂φA
φ + cot θAθ = 0.
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Remember that θ is constant (we are along the previously defined path):
differentiating the first equation of the system above we get

∂2
φA

θ − sin θ cos θ∂φA
φ

and substituting the second for ∂φA
φ we obtain

∂2
φA

θ + cos2 θAθ = 0,

which can be solved as

Aθ = H cos(φ cos θ) +K sin(φ cos θ),

with H, K, constants. Substituting the ∂φ derivative of this solution in
the first differential equation of the system above, we also find

Aφ = −H sin(φ cos θ)/ sin θ +K cos(φ cos θ)/ sin θ.

Since when φ = 0 we have A = eθ, i.e. Aθ = 1 and Aφ = 0, this implies
H = 1 and K = 0, so that

A(φ) = (cos(φ cos θ),− sin(φ cos θ)/ sin θ).

After parallel transportation around the circle, so when φ = 2π, we
obtain

A(2π) = (cos(2π cos θ),− sin(2π cos θ)/ sin θ) 6= eθ,

so that the vector has changed. On the other hand its modulus is

〈A(2π),A(2π)〉 = cos2(2π cos θ) + sin2(2π cos θ) = 1 = 〈A(0),A(0)〉 ;

thus it is unchanged.

�

Problem 7.10 Show that in a coordinate basis Γαβγ is symmetric in the indices
β, γ.
Show that in an orthonormal basis Γαβγ is antisymmetric in the indices α, γ.
Show that in an arbitrary basis the connection has an antisymmetric part.

Solution:

For the first part let us fix a coordinate basis{
∂

∂xi

}
i=1,...,m

.

We remember that in a coordinate basis[
∂

∂xi
,
∂

∂xj

]
= 0

so that the fact that a connection is symmetric implies

D(
∂

∂xi
,
∂

∂xj
)−D(

∂

∂xj
,
∂

∂xi
) =

[
∂

∂xi
,
∂

∂xj

]
= 0.
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Thus

D(
∂

∂xi
,
∂

∂xj
) = D(

∂

∂xj
,
∂

∂xi
)

⇒ Γkij
∂

∂xk
= Γkji

∂

∂xk

and, since the basis element are linear independent,

Γkij = Γkji.

Let us then consider an orthonormal basis {eµ} and remember that

Γαβγ = 〈eα, D(eβ , eγ)〉 = gαµΓ
µ
βγ ,

where in this basis gρσ = δρσ. We thus have

Γαβγ + Γγβα = 〈eα, D(eβ , eγ)〉+ 〈eγ , D(eβ , eα)〉
= eβ(〈eα, eγ〉)
= eβ(δαγ)

= 0.

In a generic basis the presence of an antisymmetric part in the connec-
tion coefficients can be traced back to the relation

D(V ,W )−D(W ,V ) = [V ,W ]

since [−,−] is antisymmetric.

�
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