Chapter 6

Special Relativity

6.1 The group of Lorentz transformations

6.1.1 2-dimensional case

Let us consider the invariant interval defined in our derivation of Lorentz trans-
formations in the previous chapter. In particular let us consider preliminarily
the 2-dimensional case, in which the finite invariant interval can be written as

s2 =% — 2.

If in R? we take the vector = (¢,7) and we equip the vector space of all these
vectors with the pseudo-Euclidean structure defined by the scalar product

(x,x) = gapz?z® |, A=12 , B=1,2,

where goo = —1, go1 = g10 = 0 and g1; = +1. Requiring the invariance of
the interval is tantamount of requiring the invariance of the pseudo-Euclidean
structure, i.e. we are interesting of determining the general form of a linear

transformation A such that
g=ATgA.

From the validity of the above equation we know that the 2 x 2 matrix A is
subject to the constraint

det(g) = det(ATgA) = det(AT) det(g) det(A)
which, since det(A) = det(AT), gives
def.

det(A)2=1 = det(A) =¢ = +1.

Moreover from the invariance of g, if we set
a b
)

-1 0\ _ f(a c -1 0 a b

0 1) \b d 0 1 c d

83

we obtain:
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and performing the matrix multiplications on the right hand side
(1 0)_(02(12 ab+cd)
0 1) \—ab+tecd b —d* )’
which, together with the constraint on the determinant
det(A) = ad — bc = ¢,

we can rewrite as a system of four equations in four unknowns:

a?—c2=1

cd—ab=0
b2_d2:1 (61)
ad —bc=¢€

Note that, of course, the last equation is dependent from the other three. Thus
only three parameters can be determined independently, or more precisely, the
solution is going to be a one parameter family of transformations. In what
follows we will call with capital letters the signs of the four parameters a, b, c,
d, so that

a = Alal , b= BJb|
c=Cc| , d = D|d|

Let us set some constraints on them, as a preliminary step:
1. from the first equation we see that a # 0.
2. from the third equation we see that d # 0.

3. for the signs the equations, respectively, imply:

A#0
AB=CD
D40 (6.2)
AD - BC =¢
Let us now solve the first equation for a, the third for d and substitute in the
second’:
a=AV1+c?
ABIJblvV1+ 2 =CDl|e|v1+b?
d=Dv1+b?
ad —bc=¢€
Using the second equation in (6.2) the second equation above can be simplified
an squared to obtain |b] = |c| as a solution. This can be rewritten as b = e,
where 7 def. —1,0,+1. Using this relation in the third equation we also find

|a| = |d|, so that we end up with the system:

a=AvV1+c?

b=nc
|d| = |al
ad — bc = ¢

1Square roots are always arithmetic i.e. their sign is always positive.
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Let us now rewrite the last equation in the above system in a different way that
we are going to use later on. First we have

ad —bc = ADlalld] — BC|b||¢|
= ADa* — BC¢?
= AD(1+¢®) — BCe?
= (AD - BC)? + AD (6.3)

Case n = 0.

In this case B=C =0, i.e. b=c¢=0. Then a = A and d = D and there can
be a sign difference between a and d. This is consistent the fourth equation,
which exactly gives AD = e. Thus we obtain

10
A_A<0 6).

Making the signs appear explicitly we obtain 4 matrix, the identity and four
discrete transformations, as follows:

. 1 0
Identity = ( 0 1 >
. . B -1 0
Time reflection = ( 0 1)
. 1 0
Space reflection = ( 0 —1 )
Space time reflection = ((1) _01) .

Case n # 0.

In this case B = £1 and C' = £1. We can multiply the second equation in the
system (6.2), relating the signs, by A and C, since now both are different from
zero, to get AD = BC, i.e. AD — BC = 0. Substituting this identity in (6.3)
we obtain again

AD =e.

Since AD = BC and BC = n we see that € = i and, so that the fourth equation
(6.1) is again a consequence of the three others. We are going to use € in place
of n in what follows, i.e. b = ec. The remaining three equations in (6.1) do
not allow an unique solution of the system. Let us parametrize the family of
solutions using 5 = ¢/a (remember a # 0 always). Then we can rewrite the first
three equations of (6.1) as

1-82=a2

This gives )
o = (1- )
o] = 1B[ld| = ||
|d| = |al
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so that | X
A:< A=) BﬂHl—@h2>'
cpla-p%* D@A-p)"

From the above relation we factor the sign of a
A=A ( (L-8)7F BB —52)12> |
AC|Bl (1 - 5?)

1 Z1
2 AD (1 _ ﬂQ) 2

We can then fix the signs using previous results with the addition that sign (3) =

AC":

A=eD

B=eC

AB=CD = AD=BC
sign (8) = AC

This gives

A:A( (1-p)" 1e%mmwuvﬁ%*>
sign (8) 8] (1 - 4%) e(l-p2) 7
and we can conclude
N4 ( (1 _52)—%1 B (1 _52)—1§> |
8 (1 —82)7F e (1 —p?)E
Although this result has been obtained when 8 # 0, it reproduces for § = 0

the identity matrix or the reflections obtained above. We will adhere to the

convention )
-3

7=(1-5)
The set

_ v eyB _ _
{A'A_A(w o ) ,A_ﬂ,e_ﬂ,—lgﬁgl}

equipped with matrix multiplication is a group, the Lorentz group.

6.2 Accelerated Observers in Minkowski space-
time
Let us consider a 2-dimensional Minkowski spacetime
ds* =g=mn= Nude! @ dr” = —dt? + da?.

Let us consider an observer stationary at the origin z = 0 and let Ly be his
world-line. At ¢ = 0 all the events which are simultaneous with him are those
which satisfy the equation t = 0, i.e. they are the points on the z-axis. We
will now apply to these events, E((Jp) = (0, p), the boosts about O, which can be
written as

{t’ v(t + Bz/c)
r = y@+pt)
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where as usual v s
B=- and 7:(1—,6'2)_/.
c

If we restrict our attention to one of the Eép ), the locus of the points that can

be obtained by all possible boosts is given by the points of the hyperbola
2?2 — 12 = p?
with > 0. The reason for this is that the interval
As? = Az? — At?

is invariant under a Lorentz transformation and it equals p? for the segment
OE{. Thus all the points on the curve

L = {(t,z)|2* —t* = p* 2 > 0}

can be parametrized by the quantity § which appears in the Lorentz transfor-

mation and are of the form (v8p/c,vp). Note that only for p > 0 the Lorentz

transformation defines a world-line starting from E(()p)7 since if rho = 0, (0,0)

is a fixed point of them. We want now study some properties of Minkowski
spacetime, with respect to observers with world-lines L(®).

Observers on L(”) are at constant distance from each other.
To prove this fact let us choose two events, E(()p Y and E((Jp 2 at t =0. As
seen from O they are separated by a distance Al = |p; — p1|. For an

observer on L(® which has speed proportional to the parameter 3 at Egp )
which is g = 0, the distance between the two events is the same. Now we
consider the points which are obtained for a § parameter distance Ag, i.e.
E(Ap,g) and E(Apg). For these points we have

E(Apé) = (vap(AB)p1/c,vapp1) and E(Apé) = (yap(AB)p2/c,vapp2)-
There distance for the observer L(® is now

Al =yaplp® = p'|
but for the observer on L), which is characterized by a velocity propor-
tional to A3, the distance Al is contracted by a factor 1/yag, i.e. it is
lp2 — p1] again.
Observers on L(”) are uniformly accelerated.
Let us choose two events Egp ) and Eg’l Ags On the world-line of the observer
L), Let the two events be characterized by the following coordinate sets,

Eflns = (ta)
EY = (ta),

where by definition of the world-line L), i.e. of the fundamental observer
on it,
t=vyap(t' +2’AB) and z=yap(a’ +t'AB).

(©2004 by Stefano Ansoldi — Please, read statement on cover page



[6.2].88 “Special Relativity”.

The proper time A7 between the two events satisfies

—AT? = —At? + Ag?

where

At=t—t and Azr=2z-2'.
Thus
Ar? = (= ap(t +2/AB))° — (' — vas(a’ + ' AB))

= (") = 2(t)vap(t’ + ' AB) + (vap)*(t' + 2’ AB)* +

—(2")? + 2(«")yap(@’ + 'AB) — (vap)*(«' + ' AB)?
= () — (@) = 2(t)*vap — 2t'2' AByap + 2(2")*yap + 2t'2 AByag

+(yap)? ()2 + 20"V AB + (2')2(AB)* — () — 22" AB — (¢')*(AB)?]
2= @ap)?) (1) = ()7

= [(#)? = (@)?] =272 [(t)? = (2')%] + (vap)
[(#)? = ()] (1 = 2728 + (7ap)® = (ap)*(AB)?)
[(#)? (96')2] (1= 2va5 + (vap)*(1 — (AB)?))
2[(«')” = (¢)*] (vap — 1)

= 2P2(’7A,8 - 1),

where, since Eg’) is on L) we have used that (/)% — ()% = p?. When

AB < 1 we have yag ~ 1 — Av?/2 and the above relation can be written
as

1
AT? ~ 2p? 5Aﬁ2

or in infinitesimal form

dr? = p?53°.
In this expression A is the increase in velocity that takes place between
two infinitesimally close events, between which the observer on L") mea-
sures a time lapse dr. Thus an observer on L(”) measures an instantaneous
acceleration
s

1
a = = -
dr p

i.e. it is uniformly accelerated.

Red-shift by fundamental observers.
We will now compute the red-shift due to the relative acceleration of two
observers moving on world lines L(1) and L(2) respectively. We remember
that the red-shift is defined as

o >\Received - )\Emitted

>\Emitted
with
A = cArT.
Thus we have
>\Received ATReceiver
= — ]_ = — ]_’
AEmitted ATEmitter
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Figure 6.1: Red-shift between fundamental observers.

and we see that what really matters is how a time interval on the emitter
world-line is measured from the receiver one. In our case a signal emitted
in a parameter lapse AS from L) is such that

At} =2pi(vap — 1)
whereas on the receiver world-line L(”2) we have
ATE =2p5(yap — 1).

Thus

ATReceiver ATy P2
1 4 = " Recever 272 _ 02
ATEmitter ATI f1

Red-shift by a stationary observer.
We are now interested in the shift experienced by the stationary observer
on L) when he receives a signal from an observer L"), Of course a
parameter lapse A3 again corresponds on L(®) to a proper time interval

A% =2p*(yap — 1).

We need now to know how is the A7’ measured on L(®). With reference to
figure 6.2 we see this interval can be computed as (in units where ¢ = 1)

A7 = AB = (tpr — B'B7) — (tan — ATA).

We set
A" = (t,za) = (vBp,7p)

where as usual v = (1 — $2)7/2 and t is the time at which the signal
arrives at A’. Moreover B’ is a parameter distance AJ along L(*), which
means it can be obtained with a Lorentz transformation from A’ with
velocity AS:

B' = (vag(WBp + ABp),vas(vp + ABYBp)).

From the definition of A’, since we have v3p = ¢, using the definition of
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Figure 6.2: Red-shift by a stationary observer.

~v we can derive the following equalities,

t
vo= (2 + p2)1/2’
12 4 p2)1/2
y = EXAT (6.4
p
which are useful to express the coordinates of A’ and B’ solely in terms
of t, p and Ap:
A= (1 (8 D))
B = (yap(t+AB(E + p*)), vas((t* + p°)1?) + ABE).

Using these results we now get

AB = ap(t+ABME +pH)Y?) —t+
—ap((t® + p°)'/%) + ABE) + (2 + p*)'/?
= yagt +vasAB(E + pH)2 —t +
—Yas(t + p*)'? = yapABt + (£ + p*)'/?
= t(yap — 1 —7a8A8) — (2 + p)*(yap — 1 — yasA0)
= (t= (P +p)"*)(vas — 1 —72840)
= (as(AB =)+ p*)/? =)

(1= (1= AB)yap)p’.
t+ (24 pH)/2

(6.5)

thus )
A = A= (= AB)yas)e”
t+ (12 4 p?)1/2
When A <« 1 we have the natural approximations

2
vap=(1-AB%) VP~ 1+ A?ﬁ
and AB
_yza B8
(P)/Aﬁ ) \/§
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Using them we get

AT

AT/

V2o(yas = V2 [t + (5 + )1/
p?[1—(1—AB)vag]

t+ (p2 +t2)1/2
p

()]

1+2 =

Q

1/2
t
-+
p

Q
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