Chapter 1

Preliminaries

1.1 Linear Algebra preliminaries

1.2 Structures over a vector space

In this section V is a vector space of dimension dim (V) = n. {e1,...,e,} is a
basis of V and {F1,..., F,} a basis of V*.

1.2.1 Exterior algebra
Let V be a vector space of dimension dim (V) = n.

Definition 1.1 (k-linear alternating maps)
The space of k-linear alternating maps over V is the set

AF(V) ={ww:VF — R with
w(v1,...,vk) = (=) "W(Vr), - Vry) I we ST

Proposition 1.1 (Vector space structure of A*(V))

A¥(V) has a vector space structure. Let B = (eq,...,e,) be a basis of V and
c= (€5, €4), with 1 <iy < iz < ...< i <n a subsystem extracted from
the basis B. There is exactly one k-linear alternating map

w.:VF—R
such that
1. we(eiy,...,e,)=1;
2. wc(ejl,...,ejk) =0 Zf{]h:]k} 75 {jl,...,jk},‘
Proposition 1.2 (Basis of A*(V))
Let

Bar = {wclc = (€iy,..-,€4,)}
Byx is a basis of AF(V). The dimension of A*(V) is given by the binomial

coefficient ( Z > .
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We set A “" R, Then A! = V* and A" = R. Moreover AJ = 0 for Jj>n.

Definition 1.2 (Exterior product in A*(V))
Let k € A¥(V) and X\ € AY(V).

A APV x ALV) — ARF(Y)

such that

ef.
(K, A )\)(’01, ey Uk, Vkeg 1, e ,UkJrl) def
1 Uy
= , E (=1)"6(Vr(1)s - - > Vr (k) )NV (et 1)s - - - s V(1))
(k+1)!
TES Ky

is called the exterior product.

The exterior product has the following properties:
1. if k € A¥(V) and XA € AY(V) then k A 7 = (—=1)*lr A K;

2. if w € AZ*(V) then w Aw = 0.

Definition 1.3 (Grafimann Algebra of V)
The set

0,n
G(vV) =P Arv)
k

together with the operations (+,-,A\) (vector space sum, vector space product by
a scalar and exterior product) is an algebra with unity 1 e R=A%(V) (1 Aw =
wA1l=w), the Graimann Algebra over V.

A basis of A*(V) can be written as
Bar ={E;N...NE; |1<i1 <ia<...<ip<n}.

We can extend the exterior product as an operation on the Gralman algebra
over a vector space V.

1.2.2 Tensor algebra

In this subsection let V', W, U be finite dimensional vector spaces over a field
F (for definiteness F can be taught as R or C). Let F(V, W) be the free vector
space generated by all couples (v, w) with v € V and w € W: thus F(V,W) is
the set of all finite linear combinations of couples (v, w). R(V,W) will be the
subspace of F'(V, W) spanned by the following elements:

) v,v0 €V, wewWw
) veV, wy,wyeW
) veV, weW, aeF
) veV, weW, a€elF

(Ul + ’UQ,U)) - (Ulaw) - ('UQ,’U}
('U7U)1 + wQ) - (/U,wl) - ('U7'U)2

(v, w) — a(v,
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Definition 1.4 (Tensor product)
The tensor product of two vector spaces V' and W is the vector space V @ W

defined as
def.

Vew <L RV, W)\ R(V,W)

The equivalence class in V@ W containing the element (v,w) is denoted as
v w. We will call ¢ the canonical bilinear map

P VXW —VW
such that ¢(v,w) =vRw .
Definition 1.5 (Universal factorization property)

Let ¢ be a bilinear map
Y VW -—U

We will say that the couple (U,1) has the universal factorization property for
V x W if VS, S vector space, and

Vf, f VxW— S
f bilinear, there exists a unique f
f:U— 8

such that f = f o).

Proposition 1.3 (Universal factorization property of the tensor product)

The couple (V ® W, @) has the universal factorization property for V. x W.
Moreover the couple (V @ W, ¢) is unique in the sense that if another couple
(Z,¢) has the universal factorization property for V.x W, then there exists an
isomorphism o

a: VoW —Z
such that ( = a0 ¢.

Proof:

Let S be any vector space and f a bilinear map
f:VxW-—S

Since V x W is a basis for F(V,W), f can be extended by linearity to
a unique map
f F(V,W) — S

by the rule

1,N 1,N
f/(z Ai(vi,w;)) = Z i f (vi, wi).
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Since f is bilinear ker(f') D R(V,W)!. This means that f’ induces a
well defined map f”

f"Vew —S

such that? (v ® w) = f'((v,w)). By construction f” o ¢ = f and f”
is unique since ¢(V x W) spans V ® W. This shows that the couple
(V ® W, ¢) has the universal factorization property for V' x W.

Let us consider another couple (Z, ) having the universal factorization
property for V x W. When in the definition of the universal factorization
property we use the following identifications

Ye—¢ U— VoW
we obtain the existence of a unique map o1,
o1 VW —Z

such that { = o1 0 ¢.

At the same time we can exchange the roles of (U ® V,¢) and (Z,().
This means that in the definition of the universal factorization property
we can also use the following identifications

pe—( UesZ
f— 0 S+— VW
so that it exists a unique map oa,
02: 7 — VW

such that ¢ = g2 0 (.
We thus have

C = 0'100'20C
d) = 0'200’10¢

and by the uniqueness of the map in the definition of the universal
factorization property we obtain

01 002 = Hz

02001 = HV@W

so that Z and V ® W are isomorphic.

1To understand this fact consider for example the action of f’ on an element of the form
(v1 + v2,w) — (vi,w) — (v2,w). We have

f'((v1 + v2,w) — (v1,w) = (v, w))

F (1 4+ v2,w)) = f'((v1,w)) = f'((v2,w))
Jfv1 +v2,w) — f(vr,w) — f(v2,w)

o1, w) + f(v2,w) — f(vi,w) — f(v2,w)

0 , VYu,mweV, YweW | (1.1)

where we used the bilinearity of f. With analogous calculations we see that f’ vanishes on the
other combinations that are used to span R(V, W) so by linearity it vanishes on all R(V, W).
2This can be seen by writing the class v ® w as (v, w) + R(V, W). But then

f'((w,w) + RV, W) = ['((v,w)) + f/(R(V,W)) = f((v,w)) + 0 = f((v,w))
because we remember that ker(f’) D R(V,W).
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Proposition 1.4 (Isomorphism of V@ W into W ® V)

There exists only one isomorphism of V.® W onto W ® V' which Yv,w sends

v w into w ® v.

Proof:

Let us consider the universal factorization property of (V @ W, ¢vw ) for
V' x W with respect to the map f

fiVXW —WeV
defined as f(v,w) 4l 1 ®v. Then we know that there exists only one
map f” such that

VW —WeV

and f"(v®@w) =w .
At the same time we can consider the universal factorization property
of (W RV, ¢wv) for W x V with respect to the map g

g WxV —VeW
defined as g(w,v) 4 ® w. Then we know that there exists only one
map ¢’ such that

g WV —VeW

and ¢"(w ®@v) = v Q@ w.
If we pay attention at how the maps f” and g” work we have

f// o g//
g// o f// _ HV@W

Iwev

so that W ® V and V ® W are isomorphic.
O

Proposition 1.5 (Isomorphism of F® U onto U)

Let us consider F as a 1-dimensional vector space over F. There exists only one
isomorphism of F @ U onto U which sends p ® u into pu, Vp € F and Yu € U.

The same holds for U @ F and U.

Proposition 1.6 (Isomorphism of (U®V)® W onto U ® (V @ W))

There exists only one isomorphism of (U@ V)@W onto U® (VW) that sends

(uRv)@w intou® (VRw), Vu e U, Vo € V and Yw € W.

We add now some additional observations.

1. The above property implies that it is meaningful to write U @ V @ W

without brackets.

2. By generalizing proposition (1.3) starting from k vector spaces Uy, . ..
we can define U1 ® ... ® Uy.
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3. By generalizing proposition (1.4) to the case of the k-fold tensor product®
Vr € Sy there exists only one isomorphism of Uy ® ... ® Uy onto Ur(1) ®
L ® Un(k) that sends u; ® ... ® ug into Un(1) @ -+« @ Ug(k)-

4. Without proof we are also going to state the following results:

Proposition 1.7 (Tensor product of functions)
Given vector spaces U; , Vi, j =1,2, and given maps

fj : Uj — V; ; ] = 132 ’
there exists only one map f,
fU0U—VieV:

such that f(u; @us) = f(u1) @ f(ug) for all uy € Uy and us € Us. By definition

we will write
def.

f=rfhef

Proposition 1.8 (Distributive properties of ® with respects to +.)
Given vector spaces U, V, U;, V;, i =1,...,k, the following properties hold:

Ui+..+U)QV = U0V+...+ U@V
Ue(Vi+...4Vy) = UVi+...4UQ V. (1.2)

Proposition 1.9 (Basis of tensor product)
Let {vi}i=1,....m be a basis of V and {w;}j=1,.. n be a basis of W. Then {v; ®
Wjtiz1, w48 basis U @ V. In particular dim (U @ V') = dim (U) dim (V).

j=1,...n

Proof:

Let U; be the subspace of U spanned by u; and Vj the subspace of V'
spanned by v;. By proposition (1.8)

At the same time by proposition (1.5) U;®Vj is a one dimensional vector
space spanned by u; ® v;. This completes the proof.
O

Proposition 1.10 () Let
LU*V)={l:U" — V,l linear}.
There exists only one isomorphism,

g: UV — L(U*V)

38, is the permutation group of k elements.
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Proof:

Let us define a function f,
f:UxV — LU V) ,
such that*
(fu, )W) =u"(w)p , YuelU , VW' eU" , YweV

(remember that u*(u) € F). By proposition (1.3) there exists only one
g,
g: UV — LU, V)
such that (g(u®v))(u*) = v* (u)v. Let us now fix some basis, {u; }i=1,...,m
inU, {u]}i=1,...m in U" and {v; }i=1,....n in V. Then {g(ui ®v;)}iz1,....m
j=1

=
is a linearly independent set in L(U™, V). To show this consider a linear
combination of these elements

Jj=1,..., n
Z aijg(u; @v;) with a;; €F, Vi=1,...,m, Vj=1,...,n,
i=1,....m
such that
j=1,...,n
Y. aig(ui ®v;) =0.
i=1,...,m
Then we have that
j=1,...,n
Vk=1,...m Z ai;g(u; @ v;)(up) = Zakjvj =0
i=1,...,m J

which, since the {v;};=1,...,n are linearly independents, implies
Vk=1,...,m, Vi=1,....n ar; =0

Since the dimensions of U ® V' and of L(U*,V) are the same g is an
isomorphism and for the definition of the universal mapping property it

is also unique.
O

Without proof we also give the additional result:

Proposition 1.11 (Tensor product and duals)
Given vector spaces U and V' there exists only one isomorphism g

g: UV — (U V)"
such that
(glu* @ v"))(u®v) =u"(w)v*(v), YueUWVu" e U VYveV,Vo* eV,

This result can be generalized to r-fold tensor products.

4Remember that u* € U* is an application from U into F. Thus u*(u) € F. Moreover f
is a function from U x V into L(U*,V). Thus f(u,v) is a linear map from U* into V, i.e.

(f(u,v))(u*) € V.
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Notation 1.1 We set up the following notation:

T 1 s

1
an%t‘V*x...xV*xVX..-XV-

Moreover we set
s not. ¢,
Ver="V;

and
v, =L,

Concerning tensor spaces we set

and

T,(V) oty o g
Then

TI(V)E T(V) @ Tu(V)
with

) =T.

Proposition 1.12 (Tensor product and linear mappings)

Ts(V) is isomorphic to the space of s-linear mappings from V* into F.
T7(V) is isomorphic to the space of r-linear mappings from V. into F.

T (V) is isomorphic to the space of (r,s)-linear mappings from V2 into F.

Proof:

We prove only the first result using the generalized result of (1.11). We
then see that T5(V) is the dual vector space of T°(V). But from the
universal factorization property of the tensor product the linear space of
mappings of 7°(V) into F is isomorphic to the space of s-linear mappings
of V* into F. As simple proofs can be given in the other cases.

O

Definition 1.6 (Tensors on V)
We define
T:(V)={T|T : V; — R, T linear},

the set of tensors over V.

Proposition 1.13 (Vector space structure of T7 (V))
Tr (V) is a vector space of dimension n"+* over R.

Proposition 1.14 (Algebra structure of 77 (V))
Let V' be a vector space of dimension dim (V') = n.
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1. TT(V) together with the operations (+, -, ®) (vector space sum, vector space
product by a scalar and tensor product) is an algebra over R.

2. Brr defined as

Brr def. {€4, ®...Qe, QFE, ®...0 Ey,

1<a;<m,i=1,...,n,1<b;<n,j=1,...,s}

is a basis of TT (V).

Definition 1.7 (Tensor algebra)

We will call et
T(V)E P 1)

r,s<0

the tensor algebra over V.

Definition 1.8 (Symmetrized tensor)
Let T be an (r, s) tensor, i.e.

1,m

i O 0
T = Z lel"‘j587i1®"'® Drr ®@drj, ®...®dzj,.
Jrode

The symmetrization of T with respect to the a given subset of vector slots, let
us say the ki-th, ..., ky-th is the (r,s) tensor (T defined as

(T)(w17"'7w7“7v17-"7v8) =

1
= E T (Wi, Wr, V1 Vg(ly)s s Vg(hn)s -+ -5 Us)-
oES

Definition 1.9 (Antisymmetrized tensor)
The antisymmetrization of a tensor T with respect to the a given subset of vector

slots, let us say the ki-th, ..., ky-th is the (r,s) tensor [T defined as
[T](wla"'aw’r'avl;-"avs) =
1 g
== Z (—1)°T (w1, .., Wr, V15, Vg(ky)s -+ o5 Vo(hn)s - -+ 5 Us)-
oES Yy

Similar definitions can be given for 1-form slots, but in general no meaning can
be given to symmetrization or antisymmetrization of mized 1-form and vector
slots.

1.2.3 Orientation

Let us consider A”(V'). Since we have A™(V) =2 R, then A™(V)/{0} consists of
two connected components.

Definition 1.10 (Orientation on V)
A choice of a connected component of A™(V)/{0} is an orientation of V.
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Proposition 1.15 (Choice of an orientation of V)
The choice of a basis in V is a choice of an orientation on V. This choice is
invariant under all endomorphisms of V' with positive determinant.

Proof:

If we consider a basis (vi, ..., v,) of V, then (v, ..., v}) is a basis of
V* (in fact the dual basis) and viA ... A vy, is a basis in A™(V), i.e.
it is in A™(V)/{0}. Thus it selects one of the connected components of
A™(V)/{0}, i.e. it defines an orientation on V.

Now consider another basis (w1, ..., wn) in V. Then w; =3, Ci;v;
and wi = > ,(C")i;v; with (C*)i; = (C™Y)ji. Then wiA ...A wh, =
(det(C™)) viA ... A v, where we are interested in the fact that

sign (det(C™)) = sign (det(C)) .

C represent an endomorphism of V' in the two fixed bases, and if its
determinant is positive, then the orientation “chosen” by (vi, ..., vn)
is the same as the one “chosen” by (w1, ..., wy) since viA ... A v}, and
wiA ...\ w;, are in the same connected component of A™(V')/{0}.

d

1.2.4 Scalar product

Definition 1.11 (Scalar product)
A real scalar product over V' is a map

(—,—):VxV—R
which is
1. symmetric, i.e. Yv,w € V it satisfies (v,w) = (w,v);

2. linear in the first argument, i.e. Yu, v, w € V and A\, p € R
= Ot v, w) = A (u, w) + p (v, w);

3. non-degenerate, i.e. such that given v € V,
(v,w)=0,Yw eV = v=0.

Given a basis of V' if we consider the matrix g;; = (e;, e;) the symmetry as-
sumption implies g;; = g;; and the non-degenerate assumption implies that the
matrix g;; is non singular. A scalar product will be called a metric on V. When,

1,

given a vector v = ).

;" v'e;, we consider the map

(v,=):V—V

this is a linear map on V, i.e. (v,—) € V* = A1(V). We can easily determine
its components in the dual basis writing

1,n
<U7 _> = Zf}jEj
J
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and acting with both sides on w = Zin wkey:

= (vw)=3"5E (w)

1,n

iyd
> gijv'w’ =
(2]

I
M=
QG.I
&

VoY

kMg

g
=
o
N————

1n

o o
E gijv'w’ = => ;w"E; (ex)
]

1,n 1,n 1,n
<Z gijvi> w’ = = Zﬁjwj. (1.3)

j i

J

Thus
1,n
~ i
v = g gijv".
i

The converse is also true: if we have a 1-form w = Zzln w;E' € V* we can
associate to it a unique vector w € V, whose components are defined as w? =
Z;’"(g’l)ijwj. Thus the metric induces a natural isomorphisms between V
and V*. Since the action of an w € V* is independent from the definition of a
metric on V', we will keep the notation w(v) and we will not rewrite it in terms

of the scalar product.

Definition 1.12 (Signature and Lorentzian metric)

Let (—,—) be a metric on V. The signature of the metric is the number of
positive eigenvalues of the matrixz g;; minus the number of negative eigenvalues.
A metric of signature m — 2 is called a Lorentzian metric.

Definition 1.13 (Timelike, spacelike and null vectors)
Let (—,—) be a Lorentzian metric on the vector space V. A vector v € V is
timelike if (v, v) < 0, spacelike if (v,v) > 0 and null if (v,v) =0.

1.3 Topology preliminaries

Definition 1.14 (Topology and open sets)
Let . be a set and T a collection of subsets of . such that:

1. €T andDeT;
2. given n €N, AiGT,izl,...,n:>ﬂg’nAiET;

3. giwen a collection {An}nen, An € T Vn e N = A,eT.

neN

T is called a topology on .77; its elements are called open sets.

Definition 1.15 (Topological space)
Let .7 be a set and T a topology on .#. The couple (Z,T) is a topological
space.
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Figure 1.1: Timelike, spacelike and null vectors.

Definition 1.16 (Neighborhood)
Let (Z,T) be a topological space and p € .. A neighborhood of p is an open
set P € T such that p € P.

Definition 1.17 (Cover)
Let .7 be a set and % = {Sa}aca a collection of subsets of .7 indexed by a set
A. % s called a cover of .7 if U,c S0 =

Definition 1.18 (Subcover)
Let . be a set and % = {Sa}aca a cover of . Let A C A. Then %' =
{So tarear is a subcover of the cover U of 7.

Of course, a subcover is itself a cover.

Definition 1.19 (Refinement)
Let & be a set and % = {Sa}aca a cover of . Another cover ¥ = {Sj}gen
of & is called a refinement of % if V3 € B, da € A such that S/B C Sa-

Definition 1.20 (Open cover)
Let (#,T) be a topological space and let O = {Oy}aeca be a cover of . O is
open cover of . if S, € T Va € A.

Definition 1.21 (Locally finite open cover)

Let (Z,T) be a topological space and O = {O4}aca an open cover of . O is
a locally finite open cover of . if Vs € . there exists W open neighborhood of
s such that {O;|0; "W # 0} is a finite set.

Definition 1.22 (Compact topological space)
Let (&, T) be a topological space. & is compact if every open cover of &
admits a finite subcover.
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Figure 1.2: Typical example of a non-Hausdorff topological space.

Definition 1.23 (Paracompact topological space)
Let (Z,T) be a topological space. . is paracompact if every open cover of .
admits a locally finite open refinement.

Definition 1.24 (Hausdorff topological space)
Let (#,T) be a topological space. . is a Hausdorff space if Vp, q € & there
exist P and Q, open neighborhoods of p and q respectively, such that PNQ = ().
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