
Chapter 1

Preliminaries

1.1 Linear Algebra preliminaries

1.2 Structures over a vector space

In this section V is a vector space of dimension dim (V ) = n. {e1, . . . , en} is a
basis of V and {E1, . . . , En} a basis of V ∗.

1.2.1 Exterior algebra

Let V be a vector space of dimension dim (V ) = n.

Definition 1.1 (k-linear alternating maps)
The space of k-linear alternating maps over V is the set

Λk(V ) = {ω|ω : V k −→ R with
ω(v1, . . . ,vk) = (−)πω(vπ(1), . . . ,vπ(k)) if ω ∈ Sn}

Proposition 1.1 (Vector space structure of Λk(V ))
Λk(V ) has a vector space structure. Let B = (e1, . . . ,en) be a basis of V and
c = (ei1 , . . . ,eik

), with 1 ≤ i1 < i2 < . . . < ik ≤ n a subsystem extracted from
the basis B. There is exactly one k-linear alternating map

ωc : V k −→ R

such that

1. ωc(ei1 , . . . ,eik
) = 1;

2. ωc(ej1 , . . . ,ejk
) = 0 if {j1, . . . , jk} 6= {j1, . . . , jk};

Proposition 1.2 (Basis of Λk(V ))
Let

BΛk = {ωc|c = (ei1 , . . . ,eik
)}

BΛk is a basis of Λk(V ). The dimension of Λk(V ) is given by the binomial

coefficient
(
n
k

)
.
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We set Λ0 def.= R. Then Λ1 = V ∗ and Λn = R. Moreover Λj = 0 for j > n.

Definition 1.2 (Exterior product in Λk(V ))
Let κ ∈ Λk(V ) and λ ∈ Λl(V ).

∧ : Λk(V )× Λl(V ) −→ Λk+l(V )

such that

(κ ∧ λ)(v1, . . . ,vk,vk+1, . . . ,vk+l)
def.=

=
1

(k + l)!

∑
π∈Sk+l

(−1)πκ(vπ(1), . . . ,vπ(k))λ(vπ(k+1), . . . ,vπ(k+l))

is called the exterior product.

The exterior product has the following properties:

1. if κ ∈ Λk(V ) and λ ∈ Λl(V ) then κ ∧ τ = (−1)klτ ∧ κ;

2. if ω ∈ Λ2k+1(V ) then ω ∧ ω = 0.

Definition 1.3 (Graßmann Algebra of V )
The set

G(V ) =
0,n⊕
k

Λk(V )

together with the operations (+, ·,∧) (vector space sum, vector space product by
a scalar and exterior product) is an algebra with unity 1 ∈ R ≡ Λ0(V ) (1∧ ω =
ω ∧ 1 = ω), the Graßmann Algebra over V .

A basis of Λk(V ) can be written as

BΛk = {Ei1 ∧ . . . ∧Eik
|1 ≤ i1 < i2 < . . . < ik ≤ n} .

We can extend the exterior product as an operation on the Graßman algebra
over a vector space V .

1.2.2 Tensor algebra

In this subsection let V , W , U be finite dimensional vector spaces over a field
F (for definiteness F can be taught as R or C). Let F (V,W ) be the free vector
space generated by all couples (v, w) with v ∈ V and w ∈ W : thus F (V,W ) is
the set of all finite linear combinations of couples (v, w). R(V,W ) will be the
subspace of F (V,W ) spanned by the following elements:

(v1 + v2, w)− (v1, w)− (v2, w) v1, v2 ∈ V, w ∈W
(v, w1 + w2)− (v, w1)− (v, w2) v ∈ V, w1, w2 ∈W

(αv,w)− α(v, w) v ∈ V, w ∈W, α ∈ F
(v, αw)− α(v, w) v ∈ V, w ∈W, α ∈ F
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Definition 1.4 (Tensor product)
The tensor product of two vector spaces V and W is the vector space V ⊗W
defined as

V ⊗W
def.= F (V,W ) \R(V,W ) .

The equivalence class in V ⊗ W containing the element (v, w) is denoted as
v ⊗ w. We will call φ the canonical bilinear map

φ : V ×W −→ V ⊗W

such that φ(v, w) = v ⊗ w .

Definition 1.5 (Universal factorization property)
Let ψ be a bilinear map

ψ : V ×W −→ U

We will say that the couple (U,ψ) has the universal factorization property for
V ×W if ∀S, S vector space, and

∀f, f : V ×W −→ S

f bilinear, there exists a unique f̃

f̃ : U −→ S

such that f = f̃ ◦ ψ.

Proposition 1.3 (Universal factorization property of the tensor product)

The couple (V ⊗ W,φ) has the universal factorization property for V × W .
Moreover the couple (V ⊗W,φ) is unique in the sense that if another couple
(Z, ζ) has the universal factorization property for V ×W , then there exists an
isomorphism α

α : V ⊗W −→ Z

such that ζ = α ◦ φ.

Proof:

Let S be any vector space and f a bilinear map

f : V ×W −→ S

Since V ×W is a basis for F (V,W ), f can be extended by linearity to
a unique map

f ′ : F (V,W ) −→ S

by the rule

f ′(

1,N∑
i

λi(vi, wi)) =

1,N∑
i

λif(vi, wi).
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[1.2].4 “Preliminaries”.

Since f is bilinear ker(f ′) ⊃ R(V,W )1. This means that f ′ induces a
well defined map f ′′

f ′′ : V ⊗W −→ S

such that2 f ′′(v ⊗ w) = f ′((v, w)). By construction f ′′ ◦ φ = f and f ′′

is unique since φ(V ×W ) spans V ⊗W . This shows that the couple
(V ⊗W,φ) has the universal factorization property for V ×W .
Let us consider another couple (Z, ζ) having the universal factorization
property for V ×W . When in the definition of the universal factorization
property we use the following identifications

ψ ←→ φ U ←→ V ⊗W
f ←→ ζ S ←→ Z

we obtain the existence of a unique map σ1,

σ1 : V ⊗W −→ Z

such that ζ = σ1 ◦ φ.
At the same time we can exchange the roles of (U ⊗ V, φ) and (Z, ζ).
This means that in the definition of the universal factorization property
we can also use the following identifications

ψ ←→ ζ U ←→ Z

f ←→ φ S ←→ V ⊗W

so that it exists a unique map σ2,

σ2 : Z −→ V ⊗W

such that φ = σ2 ◦ ζ.
We thus have

ζ = σ1 ◦ σ2 ◦ ζ
φ = σ2 ◦ σ1 ◦ φ

and by the uniqueness of the map in the definition of the universal
factorization property we obtain

σ1 ◦ σ2 = IZ
σ2 ◦ σ1 = IV⊗W

so that Z and V ⊗W are isomorphic.

�

1To understand this fact consider for example the action of f ′ on an element of the form
(v1 + v2, w)− (v1, w)− (v2, w). We have

f ′((v1 + v2, w)− (v1, w)− (v2, w)) = f ′((v1 + v2, w))− f ′((v1, w))− f ′((v2, w))

= f(v1 + v2, w)− f(v1, w)− f(v2, w)

= f(v1, w) + f(v2, w)− f(v1, w)− f(v2, w)

= 0 , ∀v1, v2 ∈ V, ∀w ∈ W , (1.1)

where we used the bilinearity of f . With analogous calculations we see that f ′ vanishes on the
other combinations that are used to span R(V, W ) so by linearity it vanishes on all R(V, W ).

2This can be seen by writing the class v ⊗ w as (v, w) + R(V, W ). But then

f ′((v, w) + R(V, W )) = f ′((v, w)) + f ′(R(V, W )) = f ′((v, w)) + 0 = f ′((v, w))

because we remember that ker(f ′) ⊃ R(V, W ).
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Proposition 1.4 (Isomorphism of V ⊗W into W ⊗ V )
There exists only one isomorphism of V ⊗W onto W ⊗ V which ∀v, w sends
v ⊗ w into w ⊗ v.

Proof:

Let us consider the universal factorization property of (V ⊗W,φVW ) for
V ×W with respect to the map f

f : V ×W −→W ⊗ V

defined as f(v, w)
def.
= w ⊗ v. Then we know that there exists only one

map f ′′ such that

f ′′ : V ⊗W −→W ⊗ V

and f ′′(v ⊗ w) = w ⊗ v.
At the same time we can consider the universal factorization property
of (W ⊗ V, φWV ) for W × V with respect to the map g

g : W × V −→ V ⊗W

defined as g(w, v)
def.
= v ⊗ w. Then we know that there exists only one

map g′′ such that

g′′ : W ⊗ V −→ V ⊗W

and g′′(w ⊗ v) = v ⊗ w.
If we pay attention at how the maps f ′′ and g′′ work we have

f ′′ ◦ g′′ = IW⊗V

g′′ ◦ f ′′ = IV⊗W

so that W ⊗ V and V ⊗W are isomorphic.

�

Proposition 1.5 (Isomorphism of F⊗ U onto U)
Let us consider F as a 1-dimensional vector space over F. There exists only one
isomorphism of F ⊗ U onto U which sends ρ ⊗ u into ρu, ∀ρ ∈ F and ∀u ∈ U .
The same holds for U ⊗ F and U .

Proposition 1.6 (Isomorphism of (U ⊗ V )⊗W onto U ⊗ (V ⊗W ))
There exists only one isomorphism of (U⊗V )⊗W onto U⊗(V ⊗W ) that sends
(u⊗ v)⊗ w into u⊗ (v ⊗ w), ∀u ∈ U , ∀v ∈ V and ∀w ∈W .

We add now some additional observations.

1. The above property implies that it is meaningful to write U ⊗ V ⊗ W
without brackets.

2. By generalizing proposition (1.3) starting from k vector spaces U1, . . . , Uk

we can define U1 ⊗ . . .⊗ Uk.
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3. By generalizing proposition (1.4) to the case of the k-fold tensor product3

∀π ∈ Sk there exists only one isomorphism of U1 ⊗ . . .⊗ Uk onto Uπ(1) ⊗
. . .⊗ Uπ(k) that sends u1 ⊗ . . .⊗ uk into uπ(1) ⊗ . . .⊗ uπ(k).

4. Without proof we are also going to state the following results:

Proposition 1.7 (Tensor product of functions)
Given vector spaces Uj , Vj, j = 1, 2, and given maps

fj : Uj −→ Vj , j = 1, 2 ,

there exists only one map f ,

f : U1 ⊗ U2 −→ V1 ⊗ V2

such that f(u1⊗u2) = f(u1)⊗f(u2) for all u1 ∈ U1 and u2 ∈ U2. By definition
we will write

f
def.= f1 ⊗ f2 .

Proposition 1.8 (Distributive properties of ⊗ with respects to +.)
Given vector spaces U , V , Ui, Vi, i = 1, . . . , k, the following properties hold:

(U1 + . . .+ Uk)⊗ V = U1 ⊗ V + . . .+ Uk ⊗ V

U ⊗ (V1 + . . .+ Vk) = U ⊗ V1 + . . .+ U ⊗ Vk. (1.2)

Proposition 1.9 (Basis of tensor product)
Let {vi}i=1,...,m be a basis of V and {wj}j=1,...,n be a basis of W . Then {vi ⊗
wj}i=1,...,m

j=1,...,n
is basis U ⊗ V . In particular dim (U ⊗ V ) = dim (U) dim (V ).

Proof:

Let Ui be the subspace of U spanned by ui and Vj the subspace of V
spanned by vj . By proposition (1.8)

U ⊗ V =

j=1,...,n∑
i=1,...m

Ui × Vj .

At the same time by proposition (1.5) Ui⊗Vj is a one dimensional vector

space spanned by ui ⊗ vj . This completes the proof.

�

Proposition 1.10 () Let

L(U∗, V ) = {l : U∗ −→ V, l linear} .

There exists only one isomorphism,

g : U ⊗ V −→ L(U∗, V )
3Sk is the permutation group of k elements.
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Proof:

Let us define a function f ,

f : U × V −→ L(U∗, V ) ,

such that4

(f(u, v))(u∗) = u∗(u)v , ∀u ∈ U , ∀u∗ ∈ U∗ , ∀v ∈ V

(remember that u∗(u) ∈ F). By proposition (1.3) there exists only one
g,

g : U ⊗ V −→ L(U∗, V )

such that (g(u⊗v))(u∗) = u∗(u)v. Let us now fix some basis, {ui}i=1,...,m

in U , {u∗i }i=1,...,m in U∗ and {vi}i=1,...,n in V . Then {g(ui⊗vj)}i=1,...,m
j=1,...,n

is a linearly independent set in L(U∗, V ). To show this consider a linear
combination of these elements

j=1,...,n∑
i=1,...,m

aijg(ui ⊗ vj) with aij ∈ F, ∀i = 1, . . . ,m, ∀j = 1, . . . , n,

such that
j=1,...,n∑
i=1,...,m

aijg(ui ⊗ vj) = 0.

Then we have that

∀k = 1, . . .m

j=1,...,n∑
i=1,...,m

aijg(ui ⊗ vj)(u∗k) =
∑
j

akjvj = 0

which, since the {vi}i=1,...,n are linearly independents, implies

∀k = 1, . . . ,m, ∀j = 1, . . . , n akj = 0 .

Since the dimensions of U ⊗ V and of L(U∗, V ) are the same g is an

isomorphism and for the definition of the universal mapping property it

is also unique.

�

Without proof we also give the additional result:

Proposition 1.11 (Tensor product and duals)
Given vector spaces U and V there exists only one isomorphism g

g : U∗ ⊗ V ∗ −→ (U ⊗ V )∗

such that

(g(u∗ ⊗ v∗))(u⊗ v) = u∗(u)v∗(v), ∀u ∈ U,∀u∗ ∈ U∗,∀v ∈ V,∀v∗ ∈ V ∗.

This result can be generalized to r-fold tensor products.

4Remember that u∗ ∈ U∗ is an application from U into F. Thus u∗(u) ∈ F. Moreover f
is a function from U × V into L(U∗, V ). Thus f(u, v) is a linear map from U∗ into V , i.e.
(f(u, v))(u∗) ∈ V .
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Notation 1.1 We set up the following notation:

V s
r

not.=
1

V ∗ × . . .×
r

V ∗ ×
1

V × . . .×
s

V .

Moreover we set
V s not.= V s

0

and
Vr

not.= V 0
r .

Concerning tensor spaces we set

T r(V ) not.=
1

V ⊗ . . .⊗
r

V

and

Ts(V ) not.=
1

V ∗ ⊗ . . .⊗
r

V ∗ .

Then
T r

s (V ) not.= T r(V )⊗ Ts(V )

with
T 0

0 = F.

Proposition 1.12 (Tensor product and linear mappings)
Ts(V ) is isomorphic to the space of s-linear mappings from V s into F.
T r(V ) is isomorphic to the space of r-linear mappings from Vr into F.
T r

s (V ) is isomorphic to the space of (r, s)-linear mappings from V s
r into F.

Proof:

We prove only the first result using the generalized result of (1.11). We

then see that Ts(V ) is the dual vector space of T s(V ). But from the

universal factorization property of the tensor product the linear space of

mappings of T s(V ) into F is isomorphic to the space of s-linear mappings

of V s into F. As simple proofs can be given in the other cases.

�

Definition 1.6 (Tensors on V )
We define

T r
s (V ) = {T |T : V r

s −→ R, T linear} ,

the set of tensors over V .

Proposition 1.13 (Vector space structure of T r
s (V ))

T r
s (V ) is a vector space of dimension nr+s over R.

Proposition 1.14 (Algebra structure of T r
s (V ))

Let V be a vector space of dimension dim (V ) = n.
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1. T r
s (V ) together with the operations (+, ·,⊗) (vector space sum, vector space

product by a scalar and tensor product) is an algebra over R.

2. BT r
s

defined as

BT r
s

def.= {ea1 ⊗ . . .⊗ ear ⊗Eb1 ⊗ . . .⊗Ebs |
1 ≤ ai ≤ n, i = 1, . . . , r, 1 ≤ bj ≤ n, j = 1, . . . , s, }

is a basis of T r
s (V ).

Definition 1.7 (Tensor algebra)
We will call

T (V ) def.=
⊕

r,s≤0

T r
s (V )

the tensor algebra over V .

Definition 1.8 (Symmetrized tensor)
Let T be an (r, s) tensor, i.e.

T =
1,m∑

i1,...,ir
j1,...,js

T i1...ir
j1...js

∂

∂xi1

⊗ . . .⊗ ∂

∂xir

⊗ dxj1 ⊗ . . .⊗ dxjs
.

The symmetrization of T with respect to the a given subset of vector slots, let
us say the k1-th, . . . , kn-th is the (r, s) tensor (T ) defined as

(T )(ω1, . . . ,ωr,v1, . . . ,vs) =

=
1
n!

∑
σ∈Sn

T (ω1, . . . ,ωr,v1, . . . ,vσ(k1), . . . ,vσ(kn), . . . ,vs).

Definition 1.9 (Antisymmetrized tensor)
The antisymmetrization of a tensor T with respect to the a given subset of vector
slots, let us say the k1-th, . . . , kn-th is the (r, s) tensor [T ] defined as

[T ](ω1, . . . ,ωr,v1, . . . ,vs) =

=
1
n!

∑
σ∈Sn

(−1)σT (ω1, . . . ,ωr,v1, . . . ,vσ(k1), . . . ,vσ(kn), . . . ,vs).

Similar definitions can be given for 1-form slots, but in general no meaning can
be given to symmetrization or antisymmetrization of mixed 1-form and vector
slots.

1.2.3 Orientation

Let us consider Λn(V ). Since we have Λn(V ) ∼= R, then Λn(V )/{0} consists of
two connected components.

Definition 1.10 (Orientation on V )
A choice of a connected component of Λn(V )/{0} is an orientation of V .
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Proposition 1.15 (Choice of an orientation of V )
The choice of a basis in V is a choice of an orientation on V . This choice is
invariant under all endomorphisms of V with positive determinant.

Proof:

If we consider a basis (v1, . . . , vn) of V , then (v∗1 , . . . , v
∗
n) is a basis of

V ∗ (in fact the dual basis) and v∗1∧ . . .∧ v∗m is a basis in Λn(V ), i.e.
it is in Λn(V )/{0}. Thus it selects one of the connected components of
Λn(V )/{0}, i.e. it defines an orientation on V .

Now consider another basis (w1, . . . , wn) in V . Then wi =
∑
j Cijvj

and w∗i =
∑
j(C

∗)ijv
∗
j with (C∗)ij = (C−1)ji. Then w∗1∧ . . .∧ w∗m =

(det(C∗)) v∗1∧ . . .∧ v∗m, where we are interested in the fact that

sign (det(C∗)) = sign (det(C)) .

C represent an endomorphism of V in the two fixed bases, and if its

determinant is positive, then the orientation “chosen” by (v1, . . . , vn)

is the same as the one “chosen” by (w1, . . . , wn) since v∗1∧ . . .∧ v∗m and

w∗1∧ . . .∧ w∗m are in the same connected component of Λn(V )/{0}.
�

1.2.4 Scalar product

Definition 1.11 (Scalar product)
A real scalar product over V is a map

〈−,−〉 : V × V −→ R

which is

1. symmetric, i.e. ∀v,w ∈ V it satisfies 〈v,w〉 = 〈w,v〉;

2. linear in the first argument, i.e. ∀u, v, w ∈ V and λ, µ ∈ R
⇒ 〈λu + µv,w〉 = λ 〈u,w〉 + µ 〈v,w〉;

3. non-degenerate, i.e. such that given v ∈ V ,
〈v,w〉 = 0, ∀w ∈ V ⇒ v = 0.

Given a basis of V if we consider the matrix gij = 〈ei, ej〉 the symmetry as-
sumption implies gij = gji and the non-degenerate assumption implies that the
matrix gij is non singular. A scalar product will be called a metric on V . When,
given a vector v =

∑1,n
i viei, we consider the map

〈v,−〉 : V −→ V

this is a linear map on V , i.e. 〈v,−〉 ∈ V ∗ = Λ1(V ). We can easily determine
its components in the dual basis writing

〈v,−〉 =
1,n∑
j

ṽjEj
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and acting with both sides on w =
∑1,n

k wkek:

= 〈v,w〉 =
∑1,n

j ṽjE
j(w) =

1,n∑
i,j

gijv
iwj = =

1,n∑
j

ṽjEj

(
1,n∑
k

wkek

)
1,n∑
i,j

gijv
iwj = =

1,n∑
j,k

ṽjw
kEj (ek)

1,n∑
j

(
1,n∑
i

gijv
i

)
wj = =

1,n∑
j

ṽjw
j . (1.3)

Thus

ṽj =
1,n∑
i

gijv
i.

The converse is also true: if we have a 1-form ω =
∑1,n

i ωiE
i ∈ V ∗ we can

associate to it a unique vector w ∈ V , whose components are defined as wi =∑1,n
j (g−1)ijωj . Thus the metric induces a natural isomorphisms between V

and V ∗. Since the action of an ω ∈ V ∗ is independent from the definition of a
metric on V , we will keep the notation ω(v) and we will not rewrite it in terms
of the scalar product.

Definition 1.12 (Signature and Lorentzian metric)
Let 〈−,−〉 be a metric on V . The signature of the metric is the number of
positive eigenvalues of the matrix gij minus the number of negative eigenvalues.
A metric of signature m− 2 is called a Lorentzian metric.

Definition 1.13 (Timelike, spacelike and null vectors)
Let 〈−,−〉 be a Lorentzian metric on the vector space V . A vector v ∈ V is
timelike if 〈v,v〉 < 0, spacelike if 〈v,v〉 > 0 and null if 〈v,v〉 = 0.

1.3 Topology preliminaries

Definition 1.14 (Topology and open sets)
Let S be a set and T a collection of subsets of S such that:

1. S ∈ T and ∅ ∈ T ;

2. given n ∈ N, Ai ∈ T , i = 1, . . . , n ⇒
⋂1,n

i Ai ∈ T ;

3. given a collection {An}n∈N, An ∈ T ∀n ∈ N ⇒
⋃

n∈N An ∈ T .

T is called a topology on S ; its elements are called open sets.

Definition 1.15 (Topological space)
Let S be a set and T a topology on S . The couple (S , T ) is a topological
space.
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Figure 1.1: Timelike, spacelike and null vectors.

Definition 1.16 (Neighborhood)
Let (S , T ) be a topological space and p ∈ S . A neighborhood of p is an open
set P ∈ T such that p ∈ P .

Definition 1.17 (Cover)
Let S be a set and U = {Sα}α∈A a collection of subsets of S indexed by a set
A. U is called a cover of S if

⋃
α∈A Sα = S .

Definition 1.18 (Subcover)
Let S be a set and U = {Sα}α∈A a cover of S . Let A′ ⊆ A. Then U ′ =
{Sα′}α′∈A′ is a subcover of the cover U of S .

Of course, a subcover is itself a cover.

Definition 1.19 (Refinement)
Let S be a set and U = {Sα}α∈A a cover of S . Another cover V = {S′β}β∈B
of S is called a refinement of U if ∀β ∈ B, ∃α ∈ A such that S′β ⊂ Sα.

Definition 1.20 (Open cover)
Let (S , T ) be a topological space and let O = {Oα}α∈A be a cover of S . O is
open cover of S if Sα ∈ T ∀α ∈ A.

Definition 1.21 (Locally finite open cover)
Let (S , T ) be a topological space and O = {Oα}α∈A an open cover of S . O is
a locally finite open cover of S if ∀s ∈ S there exists W open neighborhood of
s such that {Oi|Oi ∩W 6= ∅} is a finite set.

Definition 1.22 (Compact topological space)
Let (S , T ) be a topological space. S is compact if every open cover of S
admits a finite subcover.
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Figure 1.2: Typical example of a non-Hausdorff topological space.

Definition 1.23 (Paracompact topological space)
Let (S , T ) be a topological space. S is paracompact if every open cover of S
admits a locally finite open refinement.

Definition 1.24 (Hausdorff topological space)
Let (S , T ) be a topological space. S is a Hausdorff space if ∀p, q ∈ S there
exist P and Q, open neighborhoods of p and q respectively, such that P ∩Q = ∅.
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