
Chapter 4

Exercises

4.1 Connection and Covariant Derivative

Problem 4.1 (Transformation law of Γα
µν)

Let us consider a (1, 2) tensor Tα
µν . What is its transformation law? How do

the connection coefficients Γα
µν transform under a change of coordinates? Are

the Γα
µν a tensor?

Solution:

Let us fix a basis {eµ}µ=0,...,3 in the tangent space and let {Eµ}µ=0,...,3

be the dual basis. Then let us consider a change of coordinates defined
by

e′µ = Λµ
νeν ,

so that on the dual basis

E′µ = (Λ−1)ν
µEν ,

where {e′µ}µ=0,...,3 is the new basis and {E′µ}µ=0,...,3 the corresponding
dual. The components of a (1, 2) tensor in a given basis, let us say
{eµ}µ=0,...,3, are given by

Tλµν = T (Eλ, eµ, eν).

On the other hand we have

T ′αβγ = T (E′α, e′β , e
′
γ)

= T ((Λ−1)λ
αEλ,Λβ

µeµ,Λγ
νeν)

= (Λ−1)λ
αΛβ

µΛγ
νT (Eλ, eµ, eν)

= (Λ−1)λ
αΛβ

µΛγ
νTλµν .

By comparison of the first and last lines we get

T ′αβγ = (Λ−1)λ
αΛβ

µΛγ
νTλµν .

Let us now apply a similar procedure to the connection. We do not want
to be restricted to a coordinate basis, so we start from the definition of
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the Γ’s1,

Γ′λµν = E′λ(D(e′µ, e
′
ν))

= (Λ−1)α
λEα(D(Λµ

βeβ ,Λν
γeγ))

= (Λ−1)α
λEα(Λµ

βD(eβ ,Λν
γeγ))

= (Λ−1)α
λEα(Λµ

βD(eβ ,Λν
γeγ))

= (Λ−1)α
λEα(Λµ

βΛν
γD(eβ , eγ) + Λµ

βeβ(Λν
γ)eγ)

= (Λ−1)α
λ
[
Eα(Λµ

βΛν
γD(eβ , eγ)) + Eα(Λµ

βeβ(Λν
γ)eγ)

]
= (Λ−1)α

λ
[
Λµ

βΛν
γEα(D(eβ , eγ)) + Λµ

βeβ(Λν
γ)Eα(eγ)

]
= (Λ−1)α

λΛµ
βΛν

γΓαβγ + (Λ−1)α
λΛµ

βeβ(Λν
γ)δαγ

= (Λ−1)α
λΛµ

βΛν
γΓαβγ + (Λ−1)α

λΛµ
βeβ(Λν

α).

Thus

Γ′λµν = (Λ−1)α
λΛµ

βΛν
γΓαβγ + (Λ−1)α

λΛµ
βeβ(Λν

α)

and, because of the last term, the connection symbols are not the com-

ponent of a tensor.

�

Problem 4.2 (Compatibility condition in coordinates)
Let us consider the covariant derivative associated with the only symmetric

connection compatible with a given metric on a manifold (M ,F). Prove that
this implies that the metric is covariantly constant, i.e. ∇µgαβ = 0, and that
this also implies ∇µg

αβ = 0.

Solution:

We first compute eτ (δ
ν
µ):

0 = eτ (δ
ν
µ)

= eτ (gµαg
αν)

= gµαeτ (g
αν) + eτ (gµα)gαν

⇒ gµαeτ (g
αν) = −gανeτ (gµα)

⇒ gβµgµαeτ (g
αν) = −gβµgανeτ (gµα)

⇒ δβαeτ (g
αν) = −gβµgανeτ (gµα)

so that renaming indices in a convenient way:

eτ (g
µν) = −gµαgνβeτ (gαβ).

Now we turn to establish the main result:

D(eγ , g) = D(eγ , g
µνeµ ⊗ eν)

= eγ(g
µν)eµ ⊗ eν + gµνD(eγ , eµ ⊗ eν)

1We remember that the covariant derivative of a vector in a given direction is a vector again,
whose components are expressed in terms of the Γ’s. On the other hand the component of
a vector in the direction of the basis vector eλ can be found applying the 1-form Eλ to the
vector itself.
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= −gµαgνβeγ(gαβ)eµ ⊗ eν +

+gµνeµ ⊗D(eγ , eν) + gµνD(eγ , eµ)⊗ eν

= −gµαgνβeγ(〈eα, eβ〉)eµ ⊗ eν +

+Eν ⊗D(eγ , eν) +D(eγ , eµ)⊗Eµ

= −gµαgνβ [〈D(eγ , eα), eβ〉+ 〈D(eγ , eβ), eα〉] eµ ⊗ eν +

+Eν ⊗Eβ 〈D(eγ , eν), eβ〉+ 〈D(eγ , eµ), eβ〉Eβ ⊗Eµ

= −〈D(eγ , eα), eβ〉Eα ⊗Eβ − 〈D(eγ , eβ), eα〉Eα ⊗Eβ +

+ 〈D(eγ , eν), eβ〉Eν ⊗Eβ + 〈D(eγ , eµ), eβ〉Eβ ⊗Eµ

= 0.

So we have shown that the metric tensor is covariantly constant, and
thus ∇µgαβ = ∇µgαβ = 0, since we can write

0 = D(eµ, g)

= (∇µg)αβEα ⊗Eβ

= (∇µg)αβeα ⊗ eβ

= (∇µgαβ)Eα ⊗Eβ

= (∇µgαβ)eα ⊗ eβ

As a consequence of this result we can also obtain the following:

0 = D(eγ , g)

= D(eγ , gµνE
µ ⊗Eν)

= D(eγ , eν ⊗Eν)

= D(eγ , eν)⊗Eν + eν ⊗D(eγ ,E
ν)

= Eµ(D(eγ , eν))eµ ⊗Eν + eν ⊗Eρ 〈eρ, D(eγ ,E
ν)〉

⇒ Eµ(D(eγ , eν))eµ ⊗Eν = −〈eν , D(eγ ,E
µ)〉 eµ ⊗Eν

⇒ Eµ(D(eγ , eν))E
ν = −〈eν , D(eγ ,E

µ)〉Eν

⇒ D(eγ ,E
µ) = −Eµ(D(eγ , eν))E

ν , (4.1)

i.e. the covariant derivative of a 1-form.

�

Problem 4.3 (Useful identities)
Prove that the following identities are satisfied (it could be easier to prove some
of them using one or more of the previously established identities).

1. ∂αgµν = Γµνα + Γνµα;

2. gµσ∂τg
σν = −(∂τgµσ)gσν ;

3. ∂νg
αβ + Γα

µνg
νβ + Γβ

µνg
να = 0;

4. ∂αg = −ggµν∂αg
µν = ggµν∂αgµν ;

5. in a coordinate frame Γµ
µν = ∂ν(log

√
|g|) (this is useful in computing the

Ricci curvature tensor);

6. in a coordinate frame gαβΓµ
αβ = −|g|−1/2∂ν(|g|1/2gµν) (this is useful in

computing the Ricci scalar);
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7. in a coordinate frame ∇µV
µ = |g|−1/2∂µ(|g|1/2V µ) (this is the covariant

divergence of a contravariant vector);

8. in a coordinate frame ∇σAµ
σ = |g|−1/2∂σ(|g|1/2Aµ

σ) − Γσ
µτAσ

τ (this is
the covariant divergence of a rank-2 tensor);

9. in a coordinate frame ∇νA
µν = |g|−1/2∂ν(|g|1/2Aµν) for every antisym-

metric tensor Aµν ;

10. in a coordinate frame ∇µ∇µΦ = |g|−1/2∂µ(|g|1/2gµν∂νΦ) (this is the co-
variant D’Alambertian of a scalar).

Solution:

Whenever possible we will establish the results in intrinsic notation.

1. This is nothing but a way to say that the metric tensor is
covariantly constant, so that

0 = ∇αgµν
= ∂αgµν − Γσανgσµ − Γσαµgσν

= ∂αgµν − Γµαν − Γναµ

= ∂αgµν − Γµνα − Γνµα.

Indeed this comes from the compatibility condition and
the symmetry of the connection. We show this again by
considering a basis of vectors {eα}α=0,...,3. We have

∂α(gµν) = eα(〈eµ, eν〉)
= 〈D(eα, eµ), eν〉+ 〈D(eα, eν), eµ〉
= Γσαµ 〈eσ, eν〉+ Γσαν 〈eσ, eµ〉
= Γσαµgσν + Γσανgσµ

= Γναµ + Γµαν

= Γνµα + Γµνα

= Γµνα + Γνµα.

2. From the definition of the inverse of the metric, gµν =
(g−1)µν we know that gµσg

σν = δνµ. Taking the derivative
∂τ of both sides, we get

(∂τgµσ)g
σν + gµσ(∂τg

σν) = 0

from which we get

gµσ(∂τg
σν) = −gσν(∂τgµσ).

3. This is nothing but another way to write that the (inverse
of) the metric tensor is covariantly constant, which has
been proved in problem 4.2. Indeed we have that

0 = ∇νgαβ = ∇νgαβ = ∂νg
αβ + Γαµνg

νβ + Γβµνg
να.
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4. This useful result will be proved using the identity

log(det(A)) = Tr (log(A)) ,

which holds if A ∈ GL(n,C). Then, since g = det(gµν)
2,

∂αg = ∂αe
log det(gµν)

= ∂αe
Tr(log(gµν))

= eTr(log(gµν))∂αTr (log(gµν))

= gTr (∂α log(gµν))

= gTr

∑
β

(g−1)µβ∂αgβν


= gTr

(
gµβ∂αgβν

)
= ggµβ∂αgβµ

= ggµν∂αgνµ

= ggµν∂αgµν

= −ggµν∂αgµν .

5. From the definition of the connection coefficients in a co-
ordinate frame we have

2Γαµν = −∂αgµν + ∂µgνα + ∂νgαµ

so that

2Γµµν = gαµΓαµν

= −gαµ∂αgµν + gαµ∂µgνα + gαµ∂νgαµ

= −gαµ∂αgµν + gµα∂αgνµ + gαµ∂νgαµ

= −gαµ∂αgµν + gαµ∂αgµν + gαµ∂νgαµ

= gαµ∂νgαµ

=
∂αg

g

=
∂α|g|
|g|

= ∂α log |g|.

Then by a property of the logarithm

Γµµν =
1

2
∂α log |g| = ∂α log |g|1/2.

We remember again that the above results are only valid
in a coordinate frame because only in a coordinate frame
we can express the connection coefficients in terms of the
metric as in the starting equation.

6. From the expression for the connection coefficients in a
coordinate frame we get

gαβΓµαβ =
1

2
gαβgµγ (−∂γgαβ + ∂αgβγ + ∂βgγα)

2Some functions on matrices (as log in this case), can be defined by power series.
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= −1

2
gµγgαβ∂γgαβ +

+
1

2
gµγ

(
gαβ∂αgβγ + gβα∂αgγβ

)
= −1

2
gµγ

∂γg

g
+ gµγgαβ∂αgβγ

= −1

2
gµγ∂γ log |g|+ ∂α(gµγgαβgβγ) +

−(∂αg
µγ)gαβgβγ − gµγ(∂αgαβ)gβγ

= −gµγ∂γ(log |g|1/2) + ∂α(δµβg
αβ) +

−(∂αg
µγ)δαγ − δµβ (∂αg

αβ)

= −g
µν∂ν |g|1/2

|g|1/2
+ ∂αg

αµ − ∂αgµα − ∂αgαµ

= −|g|−1/2
(
gµν∂ν |g|1/2 + |g|1/2∂νgµν

)
= −|g|−1/2∂ν(|g|1/2gµν).

7. We have

∇µV µ = gαβ∇αVβ
= gαβ∂αVβ − gαβΓµαβVµ

= |g|−1/2(|g|1/2gµν∂µVν) +

+|g|−1/2∂µ(|g|1/2gνµ)Vν
= |g|−1/2(|g|1/2gµν∂µVν + ∂µ(|g|1/2gµν)Vν)
= |g|−1/2∂µ(|g|1/2gµνVν)
= |g|−1/2∂µ(|g|1/2V µ).

8. We start from

∇σAµσ = ∇σ(Aµνgνσ)
= gνσ∇σAµν
= gνσ(∂σAµν − ΓασµAαν − ΓασνAµα)

= gνσ∂σAµν − gνσΓασµAαν − gνσΓασνAµα
= gνσ∂σAµν − ΓασµAα

σ − gσνΓασνAµα
= gαν∂νAµα + |g|−1/2∂ν(|g|1/2gαν)Aµα +

−ΓσµτAσ
τ

=

(
|g|1/2gαν∂νAµα + ∂ν(|g|1/2gαν)Aµα

)
|g|1/2

+

−ΓσµτAσ
τ

= |g|−1/2∂ν
(
|g|1/2gανAµα

)
− ΓσµτAσ

τ

= |g|−1/2∂σ
(
|g|1/2Aµσ

)
− ΓσµτAσ

τ

9. For the sake of clarity we perform the covariant deriva-
tive with three distinct indices, using properly a Kronecker
delta:

∇νAµν = δσν∇σAµν
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= δσν (∂σA
µν + ΓµσαA

αν + ΓνσαA
µα)

= ∂νA
µν + ΓµναA

αν + ΓνναA
µα

= ∂νA
µν + 0 + ∂α log(|g|1/2)Aµα

= |g|−1/2|g|1/2∂νAµν + |g|−1/2∂ν |g|1/2Aµν

= |g|−1/2(∂ν |g|1/2Aµν).

10. We have ∇νΦ = ∂νΦ and ∇µΦ = gµν∇νΦ = gµν∂νΦ. But
∇µΦ is a contravariant vector and we can apply result 7.
above, so that

∇µ∇µΦ = |g|−1/2∂µ(|g|1/2∇µΦ)

= |g|−1/2∂µ(|g|1/2gµν∂νΦ).

We stress again that results 5., 6., 7., 8., 9. and 10. are only valid in a

coordinate basis.

�

Problem 4.4 (Intrinsic and component notations) To get some practice
in passing from component to intrinsic notation, write the following expressions
in intrinsic notation:

1. Vµ;νV
µV ν ;

2. V µ
;νW

ν −Wµ
;νV

ν ;

3. Tµν;αU
αV µW ν ;

4. Uµ;αVα;σW
σ;

Solution:

1. The result is a scalar (no free index); in particular

Vµ;νV
µV ν = gρµ∇νV ρV µV ν

= gρµ(∂νV
ρ + ΓρναV

α)V µV ν

= 〈eρ, eµ〉 eν(V ρ)V µV ν +

+ 〈D(eν , eα), eµ〉V αV µV ν

= 〈eρ, V µeµ〉V νeν(V ρ) +

+ 〈D(V νeν , eα), V µeµ〉V α

= 〈eα,V 〉V (V α) + 〈V αD(V , eα),V 〉
= 〈V (V α)eα + V αD(V , eα),V 〉
= 〈D(V ,V ),V 〉

2. The expression is a contravariant vector (one free upper
index, µ), which we write as

A = (V µ;νW
ν −Wµ

;νV
ν)eµ.

Let us consider
V µ;νW

νeµ :
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we have

V µ;νW
νeµ = ∂νV

µW νeµ + ΓµναV
αW νeµ

= W νeν(V
µ)eµ + Eµ(D(eν , eα))V αW νeµ

= W (V µ)eµ + Eµ(D(W νeν , eα))V αeµ

= W (V µ)eµ +D(W , eµ)V
µ

= D(W , V µeµ)

= D(W ,V ).

To get the second term we exchange V and W . The two
results altogether thus give

A = D(W ,V )−D(V ,W ) = [W ,V ] = £WV.

3. The expression is a scalar (no free indices) and we have

Tµν;αU
αV µW ν = D(eα,T )µνU

αV µW ν

= D(Uαeα,T )(V ,W )

= D(U ,T )(V ,W ).

4. The expression is a contravariant vector (one free upper
index). We can rewrite it as follows:

Uµ;αVα;σW
σ = gαρUµ;ρVα;σW

σ

= Uµ;ρV
ρ
;σW

σ

= Uµ;ρZ
ρ,

where we define Zρ = V ρ;σW
σ. We can use the result in

2. for each of these expressions. In particular

Z = Zρeρ = D(W ,V )

and thus

Uµ;αVα;σW
σeµ = UµρZ

ρeµ

= D(Z,U)

= D(D(W ,V ),U).

This completes the proofs.

�
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