Chapter 4

Exercises

4.1 Connection and Covariant Derivative

Problem 4.1 (Transformation law of I'{},)

Let us consider a (1,2) tensor T5,,. What is its transformation law? How do
the connection coefficients I'y;,, transform under a change of coordinates? Are
the I'y;, a tensor?

Solution:

Let us fix a basis {e, }.—o,...,3 in the tangent space and let {E*},—o,... 3
be the dual basis. Then let us consider a change of coordinates defined
by

e, =MN."ey,
so that on the dual basis

E/N — (A—I)V;LEL/7

where {€}, },—o,...,3 is the new basis and {E'#},—o,....3 the corresponding
dual. The components of a (1,2) tensor in a given basis, let us say
{en}u=o,...,3, are given by

Tﬁl, = T(EA,eH,eV).
On the other hand we have
T3, = T(E'*es¢€.)
= T((A)A"E* As"eu AVey)

(A"HA“AS"A"T(E e, e,)
(A" A AT,

By comparison of the first and last lines we get
o -1\ « v
T'G, = (A" )A"As" AT,

Let us now apply a similar procedure to the connection. We do not want
to be restricted to a coordinate basis, so we start from the definition of
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the Ist,

'y, = E'D(e,e,))
(A7) B (DA ep A e)
(A7) B (A" D(es A e)
= (AH BY (A Dles A ey)
(A B (A A Dles,e,) + A es(A,)es)
(AN [BX (AP Dien,er)) + B (A es(M, e

[e%

H/‘\

>

A
= (A [AATEY (Dles, ey)) + A en(A) B e)]
= (A MALATE, 4+ (AN A es (A7)0
= (AT NSNS, + (AT M e (A7),

Thus

I = (AT AP AT, + (A7) A es (A7)

and, because of the last term, the connection symbols are not the com-
ponent of a tensor.
a

Problem 4.2 (Compatibility condition in coordinates)

Let us consider the covariant derivative associated with the only symmetric
connection compatible with a given metric on a manifold (.#,F). Prove that
this implies that the metric is covariantly constant, i.e. V,gog = 0, and that
this also implies Vugo‘ﬁ =0.

Solution:

We first compute e (d;;):

0 = er(d)
= er(guag™)
= guaer(g ”)+ef(gua)
= guaer(g"") = —g% (gua)

= 9" guaer(g™) = =9 9" er(gua)
= daer(9™) = —¢"" 9" er(gua)
so that renaming indices in a convenient way:

;W) _

e-(g —g"*g"% e~ (gagp).

Now we turn to establish the main result:

D(e’wg) = D(evvguue/i@eV)
= ey(9" e ®es+ 9" Diey,en®ey)

1We remember that the covariant derivative of a vector in a given direction is a vector again,
whose components are expressed in terms of the I’s. On the other hand the component of
a vector in the direction of the basis vector ey can be found applying the 1-form E* to the
vector itself.
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guaguﬁev(gaﬁ)eu ey +

+9"en @ D(ey,en) + 9" Diey,e.) @ ey
= _guagyﬁew“em es)le, @ e, +
+E" ® D(ey,e,) + D(ey,e,) @ E
—glmgu [(D(ey,ea),es) + (D(ey,e5),ea) e, @ ey +
+E" ® E” (D(ey,ev),e5) + (D(ey, eu), 9) B’ ® B
_<D(e’wea) eﬂ) Ea@Eﬁ <D(e"/76ﬁ)7ea>Ea®Eﬁ+
+(D(ey,ev),e5) E” @ E” 4 (D(ey,e,),e5) B” @ E"

= 0.

So we have shown that the metric tensor is covariantly constant, and
thus V,gas = V,g°? = 0, since we can write

0 = D(eug)
= (Vug)asE® @ E”
= (Vu.9)" Peq ®ep
= (V MgaB)E ® E’
= (Vug™ea @es
As a consequence of this result we can also obtain the following:
0 = D(ey9)
= D(ey,9uwE" ® EY)
= D(ey,e, Q@ E")
= D(ey,en)®E" +e,® D(e,, E”)

1

H(D(e»\,, ))6N®EV+6V®EP <ep7D(e’Y>Eu)>
= E"(D(ey,ev))e, ® E” = —(ey, D(ey, E")) e, @ E”
E"(D(eq, e0))E” = —(ev, D(e, E")) E”
= D(e,,E")=—E"(D(ey,e.))E", (4.1)

i.e. the covariant derivative of a 1-form.

Problem 4.3 (Useful identities)
Prove that the following identities are satisfied (it could be easier to prove some
of them using one or more of the previously established identities).

1. Oaguy =Tpva +Topas

2. 9uc079°" = —(079uc)9”" ;

3. 0,9*? +T%,9"° + 10,97 = 0;
4- 009 = —99u00ag"" = 99" Oaguv:
5

. in a coordinate frame I't;, = 0, (log+/|g|) (this is useful in computing the
Ricci curvature tensor);

6. in a coordinate frame gaﬂfgﬁ = —|g|7'28,(|g|"/?g") (this is useful in
computing the Ricci scalar);
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10.

in a coordinate frame V,V* = |g|=1/20,(|g|"/?V*) (this is the covariant
divergence of a contravariant vector);

in a coordinate frame V,A,° = |g|7"/20,(|g|'/? A7) — L9, As" (this is
the covariant divergence of a rank-2 tensor);

in a coordinate frame V, A" = |g|=1/28,(|g|*/> A" for every antisym-
metric tensor A*Y;

in a coordinate frame V,VF® = |g|71/29,(|g|'/2g" 0, ®) (this is the co-
variant D’Alambertian of a scalar).

Solution:

Whenever possible we will establish the results in intrinsic notation.

1. This is nothing but a way to say that the metric tensor is
covariantly constant, so that

0 = Vaguw
= Oaur —Tovgon — Tapgor
= 8a9uv —Tpar — Toap
Oalpuv — Tpva — Tupa

Indeed this comes from the compatibility condition and
the symmetry of the connection. We show this again by
considering a basis of vectors {eq }a=o,....3. We have

9a(guv) = eal(eu,ev))

(D(ea,epn),ev) +(D(ea,ev), epn)
[0y (€orev) + T2, (€0, en)
Lou9ov + Tovgou

Tvap +Tpaw

v + F;u/a

r
Fp,uoz + Fu,ua .

2. From the definition of the inverse of the metric, g"¥ =

(97 ") v we know that g,0g°” = §,. Taking the derivative
O- of both sides, we get

(0r9u0)9”" + gus(9rg7") =0
from which we get
gua(afgw) = _gmj(afglw)-
3. This is nothing but another way to write that the (inverse
of) the metric tensor is covariantly constant, which has

been proved in problem 4.2. Indeed we have that

0= Vl,gaﬁ = VVgaﬁ = augaﬁ + le’guﬁ + Fﬁugua'

(©2004 by Stefano Ansoldi — Please, read statement on cover page



“Differential Geometry: Problems”. [4.1].71

4. This useful result will be proved using the identity
log(det(A)) = Tr (log(A)),
which holds if A € GL(n,C). Then, since g = det(g,..,)?,

Oag = aaelogdCt(gﬂ,u)

_ aaeTr(log(guV>)
_ eTr(log(QHV))aa’ﬁ' (log(guv))
= gTI' (aa IOg(g“V))

= gTr (> (97" )us0agsn
B

= gTr (g“ﬁ C%gau)
= 99" 0agsyu

= 99" 0aguu

= 99" Oaguv

= —99w0a9"".

5. From the definition of the connection coefficients in a co-
ordinate frame we have

2Fa,uu = _804,9“1/ + 8;491/04 + auga,u,
so that

M, = ¢ Tapw
= —g"0uagur + 9" 0ugva + 9" Ovgap
= —9"0aguv + " Oaguu + 9" 0 gan
= —g"0aguv + 9" 0agur + 9" 0vgan
= ¢""0vgan
009

g
9alg|
lgl
= Oaloglgl.

Then by a property of the logarithm

1
I, = 50aloglg| = dalogg|"/?.

We remember again that the above results are only valid
in a coordinate frame because only in a coordinate frame
we can express the connection coefficients in terms of the
metric as in the starting equation.

6. From the expression for the connection coefficients in a

coordinate frame we get

1
g*rh, = 59(’[39”7 (—0+9ap + 0agpy + O3gva)

2Some functions on matrices (as log in this case), can be defined by power series.
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1 o
—59"79"01gap +

1 (a7 o«
+59" (g P 0agsy +9° aagw)

1 O~g o
— fig‘”%+g‘”g ﬂaagﬁw

1 o
—59"70- log|g| + 0a(9""g 9sy) +
(009" g5y — 9" (009" ) gs~
= —¢""0,(loglg|"?) + 9a(349™") +
_(aagﬁw)ds - 5’5(%9&5)

_ guVaV|g‘1/2 QL f7%e% ap
= *W + aag — 8ag — Oag

= —|g|7"? (g“”t‘?ulgll/2 - |g|1/28u9“”>

—lgl 0. (191" g").

7. We have

9*"VaVs
= ¢"%0.Vs — g™'Th Y,

g OaVp—g ap ¥ u
= g7 (lg'?¢" 0. V) +

+lgl 728, (19]" g Ve

lgl =2 (191" 9" 0. V2 + Bu(lg]'/* " Vi)
lgl=""*0, (19> 9" Vi)
lgl =" "%0, (19> V™).

v,V

8. We start from

VaAug = VG(AWQM)
= gUUVUAW,
= ¢ (0cAu =TG5, Aaw —T5, Aua)
= 970:Am — 9" TG, Ao — 9715, Apa
= g7 0, Ap — T2, A0 — g7 T, Ay
= g"0Aua +1917 200 (191" 9™ ) Apa +
=
(1917290, Ay + 0,191/ *9™) A
lg*/2
T AT
lg~/%8, (Igl”zg“"Aw) T As"

ol ™20, (lo"*4,7) ~ 17, A4,7

9. For the sake of clarity we perform the covariant deriva-
tive with three distinct indices, using properly a Kronecker
delta:

V, AR = 5 VA"
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= 0y (O, A" +T5 A 4T, ARY)

8y A" 4 Tl A £ TV, AM®

= 9 A™ 40+ dalog(|g]"/?) A"
91711920, A" + |g| ™"y |g|'/> A
g1~ "% (@, g2 A™).

10. We have V,® = 9,® and V*® = ¢g"’V,d = ¢"”9,P. But
VH#® is a contravariant vector and we can apply result 7.
above, so that

V.V D g™ 28,,(1g]"/*V* @)

lg| " *0, (9] g" 0, ).

We stress again that results 5., 6., 7., 8., 9. and 10. are only valid in a
coordinate basis.
O

Problem 4.4 (Intrinsic and component notations) To get some practice
in passing from component to intrinsic notation, write the following expressions
wn inirinsic notation:

1. Vi, VEVY;

2. VI, WY —WH, VY
3. T UCVEWY;

4. UrOV, WO

Solution:

1. The result is a scalar (no free index); in particular

Vi VEVY = g VL VPVEYY
= g0V’ + T VHVIVY
= (ep,en) e, (VAOVHVY +
+(D(ev,eq),e,) VIVEVY
= (e, Ve ) Ve, (VF) +
+(D(V'e,,eq),V'e,) V"
= (eq,V)V(V*)+(V*D(V,e,),V)
(V(V¥ea +V*D(V,eq), V)
= (D(V,V),V)

2. The expression is a contravariant vector (one free upper
index, p), which we write as

A= (VW —WH, Ve,

Let us consider
VE WY e, :
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we have

vt WY, = 9, V¥W"e,+TL V*WZe,
= WY, (V*)eu + E*(D(ey,en))Vi W e,
= W({V"e,+ E"(DW"e,,ea))V%,
= W{WV")e,+ D(W,e,)V"
= D(W,V"e,)
= D(W,V).

To get the second term we exchange V' and W. The two
results altogether thus give

A=DW,V)—D(V,W)=[W,V] = £wV.

. The expression is a scalar (no free indices) and we have

Ty UVEWY = D(ew,T)u UVFW”
= D{U%.,T)(V,W)
= DU, T)(V,W).

. The expression is a contravariant vector (one free upper

index). We can rewrite it as follows:
Ul VoW = g*PU" ) Va,o W7
= U“;pvawa
— U”;pr,

where we define Z# = V*.,W?. We can use the result in
2. for each of these expressions. In particular

Z =Ze,=D(W,V)
and thus

UrVaeWoe, = U",Z e,
= D(Z,U)
D(D(W,V),U).

This completes the proofs.
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