Chapter 3

Differential Geometry

3.1 Differentiable Manifold

Definition 3.1 (Locally Euclidean Hausdorff space)

Let A be a topological Hausdorff Space. .# is locally Euclidean of dimension
m if Ym € A there exists a neighborhood U C # and an homeomorphism
¢:U— ACR™.

¢ is called a coordinate application and the couple (U, ¢) a coordinate system on
A in the neighborhood of m. If we take the i-th canonical projection on R™,
74, i = 1; 0 ¢ is the i-th coordinate function on .# in the neighborhood of m.

Definition 3.2 (Differentiable Structure)

A C® differentiable structure on a locally Fuclidean, Hausdorff topological space
A of dimension m is a collection of coordinate systems F = {(Un, 9a)}nca
which satisfies the following properties:

1. the {Ua} e 4 are a cover of M, ie. JycqUa = A ;

2. for every choice of ¢ and ¢g, ¢a0¢lgl is C°(R™,R™), i.e. the structure
is compatible.

A differentiable structure F which is mazimal is called an atlas.

Definition 3.3 (Differentiable Manifold)
A differentiable manifold of dimension d is a couple (M ,F) with:

A a topological, locally Euclidean Hausdorff space which is second countable;

F an atlas for A .

If omitting the specification of the differentiable structure will not compromit
clarity, we are going to understand it implicitly, i.e. we will use equivalently
sentences like “Let .# be a manifold” and “Let (A ,F) be a manifold”.
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Figure 3.1: Coordinate maps and function on a locally euclidean Hausdorff space.

Figure 3.2: Compatibility condition for a differentiable structure.
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Figure 3.4: Differentiable map between manifolds.

3.2 Maps on Manifolds

Definition 3.4 (C*° function on a manifold)

Let (A ,F) be a differentiable manifold of dimension m and O an open subset
of M. A function f: O — R is differentiable of class C™ if V(U, ¢) € F then
foop™tis C°(R™ R).

Definition 3.5 (C*° map between manifolds)

Let us consider (A ,F) and (AN, G), two differentiable manifolds of dimension
m and n respectively. A map F : # — A is differentiable of class C'™ if for
every choice of (U, ¢) € F and (V,)) € G o fop~t is C°(R™,R").

Definition 3.6 (Smooth curve on a manifold)
Let us consider a manifold (A ,F). A smooth curve on 4 is a differentiable
map

o:la,b] — A
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such that o(t) € 4. The tangent vector to the curve is denoted by &(t), which

is defined as
) d

Remember that the differential of o(t) is a map
dJ-|t . Rt =R — %g(t),

which maps tangent vectors in R; into tangent vectors of .#, ).

3.3 Partition of unity

Definition 3.7 (Differentiable partition of unity)
Let (A, F) be a manifold. A differentiable partition of unity is a couple (%, P)
where:

1. Z is a locally finite open cover of M;
2. P is a collection of functions
P={fy  M—R|Ve#, f differentiable}

(a) fv >0,VV € %;
(b) supp (fv) C V;
(c) ZV@% fr=1

We see that the sum is finite because Z is a locally finite open cover of .Z .
Thus Vm € .# it is possible to find a neighborhood P which intersects only a
finite number of V' € #Z. In that neighborhood the sum is thus restricted only
to these V'’s.

Proposition 3.1 (Existence of partition of unity)

Let (A, F) be a paracompact differentiable manifold and let % be an open cover
of M . There exists a partition of unity (%, P) where X is a locally finite open
refinement of U .

We will say that the partition of unity (#,P) is subordinated to the cover % .
The paracompactness is required to obtain the open locally finite refinement %
starting from % .

3.4 Tangent Space

Definition 3.8 (C°(.#,m,R))
Let (A, F) be a manifold and let me A . We define C° (A ,mR) as the set of
all functions defined on a neighborhood of m and with real values.

Definition 3.9 (Germs of functions around m € .#)
Let us consider f,g € C™®(M,mR). We define an equivalence relation, ~, in

C®(AM,mR) as follows: [f ~ g] < [f = g in a neighborhood of m]. A germ of

functions around m is an element, fde:f' [f], of the R-algebra C®° (.M ,mR) =

Co (M, mR)/ ~.
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Definition 3.10 (Tangent vector at m € .Z)
A tangent vector v at m€ A is a linear map v : C°(M,mR) — R such that

vf.g € Cx (A, mRyw(fg) = v(f)a(m) + v(g) f(m).
v is a derivation of C*(.#,m, R).
Definition 3.11 (Tangent space at m € .#)
The tangent space at m € A is

Mp = Tptt < {v|vis a tangent vector atme€ #}.
The name “space” is justified by the following

Proposition 3.2 (Dimension and coordinate basis of .#},)
My s a vector space of dimension dim (M) = dim (A) and

0
Ox; i=1,...,m

0 def. O _
o | 0 o] e

0
85&' i=1,....m

is called the coordinate basis of .#y.
Proof:

is a basis of My, with

The basis

The proof that .#n is a vector space is left to the reader: all the axioms
of a vector space structure are satisfied when the vector space operations
are defined as follows:

wHw)(f) E w)twlf) , Vwwe (), felC(4nR)
A0 E x(f) , Wwe (), AeR, felC®(#,mR),
of course the operations on the left-hand sides of the above definitions
are the operations that define the vector space structure of .#n, whereas
on the right hand sides the sum and product are the ordinary sum and
product of real numbers.

We will now prove that {8/0z;]n}i=1,...,m is actually a basis of .,
which will also give a proof of the statement about its dimension. Let
us thus consider a coordinate map ¢ : # — R™ for .# around m with
o(m) = (a1,...,am) € R™. For f € C°(#,m,R) we define the map
F = fog¢™ !, for which the following chain of equalities holds:

F(7) - F@) = /0 dilsF(s(rx a) + @)ds

= Z/O 822_}7(5(7*— &) + @) (rs — ai)ds

= z:(rZ a;) ; aiF(s(F—d’)—&—&)ds
= > —a)H(), (3.1)
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where the functions H; are C* because so is F.
Composing with ¢ the above relation we obtain that Vf € C°°(.#,m,R)
we can find functions hi, ..., hym € C®(#,m,R) such that

1,m
f@) = f@) + Y (i —ai)hi(a).
Of course this result implies that

0
81‘1'

| =G,
m
Let us then consider a tangent vector v € .#n. We have

o) = ol + D (- adh)

1,m

= Y v(zi)hi(m)

i

S ) 2] ). (3.2)
ox;

i

Thus the {0/0zi|m}i=1,...,m are a system of generators for ./n.
Let us consider a vanishing linear combination,

then

1,m
: 5 |
0= (Ej:)‘]’ (‘)%—‘m> (xi)=Xi , Vi=1,...,m,

so that the system of generators is actually linearly independent. It is
thus a basis.
|

3.5 Cotangent Space and the differential

Definition 3.12 (Cotangent vector at m € .#)
A cotangent vector v at m€ A is a linear map w : My — R.

Definition 3.13 (Cotangent space at m € .Z)
The cotangent space at m € A is the vector space, My, dual to Mp, i.e. the
vector space of all linear maps from My into R.
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Figure 3.5: Differential of a map between manifolds.

Definition 3.14 (Differential of a function between manifolds)
Let f: M — N be a differentiable map between two differentiable manifolds.
Let us consider me M, so that f(m) € A, and a map

df lm: Mm — Ny(m)

such that
dif.

Vo € MVG € C®(M,mR)df (v)(§) = v(go f).
df | m is the differential of f in m.

Proposition 3.3 (Coordinate representation of dfp)

Let f: M —> N be a differentiable map between two differentiable manifolds.
Given (U, ¢) chart around m € A and (V,v) chart around f(m) € A the
differential of f is represented by the Jacobean Matrix

f;
0x; ) i=1,..m

j=1,....n

Proof:

Let us call {z;}i=1,...,m and {y;};=1,....n the coordinate functions as-
sociated to the coordinate maps (U, ¢) and (V,v) around m € .# and
f(m) € A respectively. If g € C°(A, f(m),R) then gof € C°(.#,m,R)
and by definition of df |m:

df(a%ih) (9) = a%ih(wf)

61 1
= - (gofoo™)
i | y(m)

- 8} (gov oo fop)
¢(m)

87'7;

1,n

0

. 5th(f<m>>

0
87’i

(goy™)

w (sjopofoop™t)
¢(m)
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;) ,
(gov™) l (yjofoo )
i | gmy

Thus

or

(df)i,j = (871—‘ (?Jj o f)) def. Jacobean matrix of f.

¥

O

We consider now the special case of a function f : U € M — R. Then,
given m € U, the differential of f is a linear map df|n : Mm — Ry). The
tangent space Ry with basis 0/(01)] ), where 1 is the identity map (nat-
ural projection) on R. Of course Ry = R and we use the identification
9/(01)] @y = 1. In this way we have that df]n, € .#; is an element of the
cotangent space at m € .Z .

Proposition 3.4 (Coordinate basis in .Z)
Given a chart (U, ), the differentials of the coordinate functions on U C M
are a basis of the cotangent space My in me U at A .

Proof:

Consider {dz;]m,? = 1,...,m}. Since z; : U C .#4 — R, where we
remember that x; = r; o ¢, we can use the observation of the special
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case above. This means that dx;|m € .#p. Moreover for i = 1,...,m,
i=1,...,m, we have

0 0 N e
e (57],) = o |, 2=

so that {dz;|m, ¢ = 1,...,m} is the basis dual to the basis {9/(0z;)]m,
i=1,...,m} of M.
O

{dz;]m,i = 1,...,m} is the coordinate basis in .y and the dz;]y are called
1-forms inm € .Z.

Proposition 3.5 (Coordinate expression of the differential)
Let (A, F) be a manifold and f : U C M — R a function on A . Let me U,
(U, @) a chart for #. We have

1m
df—|m = Z

of
8$i —‘ . d$1—| m-

Proof:

This result can be proved applying both sides to 9/(0x;):

ﬁ} _
) |
] o= o], =3 (2]
-3 2]
-2, o

and observing that they yield the same result. By linearity the right
hand side thus acts in the same way as the left hand side on every

tangent vector and the equality follows.
O

3.6 Forms and Tensor at a point

Tangent and cotangent vectors are not the only concepts that can be defined at
a given point m of a manifold .#. In particular, we have seen that the tangent
space at m € .# is a vector space: thus all structure that are defined on a vector
space V are defined at a given point of a manifold by the identification V = ..

Definition 3.15 (Form at m € .%)
A kform w at m€ A is an element w € NF(My).
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Thus it is a k-linear alternating map w : (.#y)* — R, acting on a k-ple, (v1,
..., Uk), of vectors tangent to .# at m. An analogous definition holds for tensors.

Definition 3.16 (Tensor at m € .#)
An (r,s)-tensor T at me A is an element T € T (Mp).

T is a linear map that associates to r tangent vectors and s one-forms at m € .#
a real number.

All properties of forms and tensors over a vector space can be generalized
for forms and tensors at a given point of a differentiable manifold. Basis for
forms and tensors can be obtained from fixed basis in .#; and in particular
for coordinate basis. Symmetrization, anti-symmetrization and all operators
defined on tensors clearly also holds. The only important remark is that in
general, there is no preferred way to relate forms and tensors at different points
of a manifold (the same is true of vectors, of course).

3.7 Bundles

Definition 3.17 (Vector bundle)
Let A and P be two manifolds, V a vector space andw : B — M a differential
map such that:

1. m s surjective;

2. Ym € M there exists U C . neighborhood of m such that m=*(U) is
isomorphic with U x V.

Then A is called a vector bundle over . .
M is called the base space, V is the fiber

Definition 3.18 (Section of a vector bundle)
Let B be a vector bundle over #. A map ¥ : M — B such that

Yor=1yuy
is called a section of A.

Definition 3.19 (Tangent bundle)
Let (A, F) be a manifold and

T(t) S ) M.
me.H

T( M) together with the canonical projection
m:T(M)— M

is the tangent bundle over . .
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Figure 3.7: Vector bundle.

Figure 3.8: Section of a vector bundle.
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Definition 3.20 (Cotangent bundle)
Let (A, F) be a manifold and

() S |

me. A

T*(A) together with the canonical projection
T (M) — M

is the cotangent bundle over ./ .

Definition 3.21 (Tensor bundle of the (r,s) type)
Let (A, F) be a manifold and

TH (M) S | TE (M)
me.#

TT (M) together with the canonical projection
o T (M) — M
is the (r,s) tensor bundle over . .

Definition 3.22 (Exterior k-bundle)
Let (A, F) be a manifold and

ANo(tt) = | N (M)
me M

AF(A) together with the canonical projection
man A — A
is the exterior k-bundle over ./ .

Definition 3.23 (Exterior bundle)
Let (A, F) be a manifold and

Aat) = | Mttn).
meH

A(A) together with the canonical projection
A NA)— A

is the exterior k-bundle over 4.

Proposition 3.6 (Vector bundles as differentiable manifolds)

T(H), T*(M), TT (M), N (), N(A) are differentiable manifolds of dimen-

. m .
sion 2m, 2m, m™ st m 4+ , m+ 2™ respectively.

k
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Proof:

We will sketch the proof for the case of T'(.#). In particular T(.#) is a
topological space by choosing

{71'71 (U)|(U, ¢)coordinate system for.# }

as a basis for a topology of T(.#) (thus 7 *(U) is open by definition).
Moreover for all (U, ¢) coordinate systems of .# we define a coordinate
system on T'(.#), called (U, ¢), as follows:

U is the inverse image of U under the natural projection m:
U=n"(U);

¢, which acts on a vector at a point, is a map

¢: 7T_1(U) — R

such that, if v € m, ¢(v) L (21(7(V)), ..., Tm(7(v)),
dz1In(v), ..., dzm]n(v)): the first m-components of the
coordinates are the coordinates of m = m(v), whereas the
second m-components are the coordinates of v with respect
to the basis { 0/0xi |x(v) }i=1,...,m Of Mr(v).

Thus F = {(U,¢)|(U,¢) € F} is a differentiable structure on T'(.#);
the compatibility can be seen because if d~>, 1/; € F then the change of
coordinates 1/7 o q~571 involves the coordinate change in .# and the Ja-
cobean matrix of this change of coordinates: but both of them are C*°
since we are on a C'™ manifold, i.e. the differentiable structure is C°.
Thus T(.#) is a topological space with a differentiable structure F, i.e.
it is a differentiable manifold.

The same strategy can be applied to all other cases.

O

From the definition we can see that vector bundles over a manifold are always
locally trivial, in the sense that, given a coordinate system (U, ¢) € F, then

a7 H(U) =2 ¢(U) x R™ = U x R™,

i.e. 771(U) is a product U x R™ up to diffeomorphisms.
Of course this property is in general not globally true. This motivates the
following

Definition 3.24 (Parallelizable manifold)
A manifold is parallelizable if T(.#) is a product # x R* up to diffeomor-
phisms.

3.8 Fields

ATTENZIONE A DEFINIRE CORRETTAMENTE LA DIFFEREN-
ZIABILITA’ (SMOOTH) NEI VARI CASI
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Figure 3.9: Local triviality.

Figure 3.10: Parallelizable manifold.
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Definition 3.25 (Smooth vector field)
A smooth vector field over # is a section of T(.#). We will denote the space
of all vector fields on M with V(A4).

Definition 3.26 (Line element field)
A line element field over .# is is a section of the line bundle over A, i.e. it is
a smooth assignment of a couple (v, —v) with v € Mp at allme A .

Proposition 3.7 (Characterization of vector fields)
Let X be a vector field on an open subset W C . The following properties
are equivalent:

1. X 1is differentiable;
2. given a chart (U,¢) € F with coordinate functions (z1, ..., Tm) if we

consider
1,m

0
XWU = XZ: ai%’
then a; : U C M — R are differentiable functions on U;
3. if V. C A is open and f € C(V), then X(f) € C>*(V), where we define

def.

X(f)(m) =" Xn(f)
Proof:

1= 2 If X is differentiable then given a coordinate system (U, ¢)

then X1y,
X-‘ U U— T(L//)

is differentiable. Moreover, since xz; is a coordinate func-
tion, dz; o X v is differentiable. But dz; 0o X |y = a; on U
and the proof is complete.

2 =3 On an open set V let us consider f € C*(V). Let (U, ¢)
be a coordinate system on .#. Then

1,m
X( =Y agl

is such that the a; are differentiable functions by hypothesis
and 9f/dx; is differentiable since f is C'oo; thus X(f) is
also differentiable, as stated.

3 =1 Let (U, ¢) be a coordinate system on .# chosen arbitrarily

and let us call (z1,...,%m) the coordinate functions on U.
Then

(z1(m(v)),...,z1(7(v)),dz1(v),...,dzm(V))

is a coordinate system on T'(.#), i.e. it gives coordinates
for each v € #m with m € U. Thus the differentiability
of z; omo X|u = z; and of dz; o Xy = X(x;) (which is
implied by 3. with f = z;) yields the differentiability of
Xlu.
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The proof is so complete.

Definition 3.27 (Smooth 1-form field)
A smooth 1-form field over . is a section of T* (). We will denote the space
of all smooth 1-form fields on M with EY(M).

Definition 3.28 (Smooth tensor field)
A smooth tensor field over .# is a section of Ty (). We will denote the space
of all tensor fields of the (r,s) type on M with T (A ).

Proposition 3.8 (Characterization of smooth tensor fields)
Let T be a tensor field of the (r,s) type on an open subset W C .#. The
following conditions are equivalent

Definition 3.29 (Smooth k-form field)
A smooth k-form field over .4 is a section of A*(.#). We will denote the space
of all k-form fields on A with EX ().

1. T s differentiable;

2. given a chart (U,¢) € F with coordinate functions (x1, ..., Ty) if we
consider
A ) )
_ i1 _ .
Ty = ’ > ’ le...jsaxil ®"'®Wir®d$31 ®...®dy;,,
11yeeeylyp
j17 s ajs

then a?l“'_'_?s :U C M — R are differentiable functions on U.

Proposition 3.9 (Characterization of smooth k-form fields)
Let w be a k-form field on an open subset W C .#. The following properties
are equivalent:

1. w is differentiable;

2. gwen a chart (U,¢) € F with coordinate functions (xy1, ..., Tpy) if we
consider
1,m
W]U = Z ail___,;kdxil /\/\dl’lk,
11<... <1k

then a;,. i, : U C M — R are differentiable functions on U;

3. if V. C M is open and Vi, ..., Vi are smooth vector fields on V', then then

Vi, Vi) (m) E wo(m)(Vilms - - Vi)
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Definition 3.30 (Smooth form field)
A smooth form field over # is a section of (). We will denote the space of
all form fields on M with E(M).

Proposition 3.10 (Characterization of smooth form fields)
Let w be a form field on A . Then w is smooth if and only if all the components
in every given coordinate system (U, @) are differentiable functions from U in

R.

Definition 3.31 (Smooth vector field along a curve)
Let o(t) be a curve on a manifold (4 ,F). A smooth vector field along o is a
differentiable map

V:la,b| CR — T(A)

such that
ToV(t) =oa(t).

Analogous definitions can be given for form and tensor fields along a given curve
.

Proposition 3.11 (Differential as a 1-form field)
Let f: # — R be a function on a differentiable manifold (#,F. The map

df : M — T*(M) = N (M)
defined as df (m) = df | is a 1-form on A .

Proof:

To establish the result we have only to show that df is differentia-
ble. This is true because of proposition 3.7, which can be applied
if we consider a smooth vector field V', remember that by definition
df (V) = V(f) and observe that V (f) : . # — R is differentiable.

O

Proposition 3.12 (Existence of line element fields)

Every non-compact manifold admits a line element field.

A non-compact manifold admits a line element field if and only if its Euler
tnoariant s zero.

3.9 Orientation on manifolds

Definition 3.32 (Orientation on a manifold)
A differentiable manifold (A ,F) of dimension dim (.#) = m is called ori-
entable if there exists O C F such that:

1. {Ua} (v, po)co 18 a cover of M;
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2. Y(U, @) and (V1) coordinate systems of A , with coordinate functions (x1,
covy Tm) and (Y1, ..., Ym) respectively, it holds that the function

A:UNV —R

defined by
dei N ... Ndxy = Adyr A ... A dym,

is everywhere positive.

O s called an orientation of 4 .

We know from the definition 1.10 that a choice of a basis in each tangent space
gives an orientation of the tangent space itself. Moreover (proposition 1.15)
change of basis of positive determinant select the same orientation in .#y. Thus
the fact that in U NV the function A, which is nothing but the determinant
of the change of coordinates ¥ o ¢!, is always positive means that the two
coordinate systems give the same orientation to the tangent spaces. Moreover
a necessary and sufficient condition for a manifold to be orientable is given by
the following proposition:

Proposition 3.13 (Characterization of orientable manifolds)
Let (A, F) be a manifold. A is orientable if and only if there is a nowhere
vanishing m-form on A .

Proof:

= Let F be the differentiable structure of .#Z and let us assume . is
orientable. Let O be an orientation. Let us consider the open cover

U = {supp (¢) |¢ € O}

and a partition of unity (%, P) subordinated to . VYV € Z let us
consider a ¢y € O such that V C supp (¢v): we write the coordinate

functions associated to this coordinate map as x(l‘/), ce xglv) and in this
system of coordinates we can locally define an m-form

W) 4 d:pgw A Adzl).

In terms of these m-forms we define

w et Z Frw®™,

Vez

where fy € P. Now Vm € .Z the set
.A:{VG%‘mEV}:{Vl,V27...,Vn}

is finite and around m we have

w = fue" .+ e+t M
= fvld:cgvl) A AdeYV L+

axi(ivi) (V1) (V1)

+fv; det foy | dat™ AL A da )
Oz "
8 (Vn)

+fv,, det x?v ) dmgvn) VAN dxg“,
Ox;
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In the above written local expression all the determinants are positive,
because the V' € # are subordinated to the orientation O, all the fv
are non-negative, because of the definition of partition of unity, and at
least one of them must be positive since again, by definition of partition
of unity, their sum must equal 1. We thus obtain that Vm € .Z, w is
non-vanishing at m, i.e. w is a nowhere vanishing m-form on .Z.

< Let w be a nowhere vanishing m-form on .#. We ca without restric-
tion assume that F is maximal. Then V(U,¢) € F, if the coordinate

functions associated to ¢ are x@, R x&i{”, we can locally write

w = f¢d$§¢) VAN d:rgff),
where fy : U — R is nowhere vanishing since w satisfies this very
property. Let us consider

O {(U,9) € Flfs >0} :
since F is maximal, O is a cover of .#. Moreover if (U, ¢) and (V)
are two arbitrarily chosen coordinate systems of O with UNV # 0, then
the change of coordinates is such that

dxg’”)/\.../\dngf):fi:Adx§¢)A...Adx§f)
P

with A = f4/fy > 0. Thus O defines an orientation of .# .
O

The nowhere vanishing m-form on .# is called a volume element for . .

Definition 3.33 (Regular domains and outer vectors)
Let (A, F) be an m-dimensional oriented manifold and let D C 4. D is called
a reqular domain if Vm € M one of the following properties holds:

1. 3U open neighborhood of m such that U C M — D, i.e. mis exterior with
respect to D;

2. 3U open neighborhood of m such that U C D, i.e. m is interior with respect
to D;

3. (U, ¢) withme U and ¢(m) = (0, ..., 0) such that (UND) = ¢(U)NZR™,
i.e. mis a boundary point.

The union of all boundary points is 0D, i.e. the boundary of D.
Let us now consider m€ 9D and v € My. v is called an outer vector with
respect to D if there exists a smooth curve o(t) on M such that:

1. 6(0) = v;
2. Je > 0 such that o(t) ¢ D for 0 <t <.

A maximal collection of coordinate systems as defined in 3. above is compatible
on 0D and makes it differentiable manifold of dimension m — 1.

Definition 3.34 (Boundary of manifold)
Since A itself is a regular domain, .4 is manifold of dimension m—1 (actually
a submanifold of M ), which is called the boundary of A .
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Figure 3.11: Induced orientation on the boundary.

With the concept of an outer vector we can now define a coherent way to give
an orientation to a boundary.

Definition 3.35 (Orientation of the boundary)

Let # be an orientable manifold, D a regular domain in .# and v an outer
vector with respect to D. Let us fix an orientation on A (i.e. fix coherently
a basis in each My) and then consider wiq, ..., wy—_1 a basis of (0D)y. w1,
.., Wp_1 18 an oriented basis on ID if v, wy, ..., w,_1 gives the chosen
orientation on M .

The choice of an oriented basis is an orientation on 0D.

The definition given above is independent from the choice of the outer vector
and gives a smooth orientation on 0D in the sense of definition 3.32.

3.10 Exterior differential

Proposition 3.14 (Exterior differentiation)
Let (A ,F) be a differentiable manifold. There exists one and only one linear
map

d:E¥(a) — EFY () VEeN

such that:
1. if [ is a differentiable function on A (i.e. a 0-form), then d(f) = df;

2. if k is a k-form and X an l-form over ., then

d(k AX) =dk AN+ (=1)k A dX;

3. d*>=dod=0.

3.11 Maps between manifolds

Definition 3.36 (Pullback)
Let (A, F) and (A, G) be two differentiable manifolds and

Vi M — N
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Figure 3.12: Pullback.

a differentiable map. v induces in a natural way a map
b EMN) — EX (M),
the pullback, such that

1. Vk €N, k>0, given w € EF(A) then
Vu(@)(m) (V1 -, vk) S @((m) (] a(v1), - -, ] n(v));

2. if k=0, given f € EX(N) = C>(N) then
def.

Yl f) = fod.

Proposition 3.15 (Properties of the pullback)
Let (M, F) and (AN, G) be two differentiable manifolds and

VM — N
a differentiable map; let 1, be the associated pullback.

1. The pullback is linear, i.e.
Pu(w AT) = hu(w) Atha(7).
2. The pullback commutes with exterior differentiation, i.e.
dot. = . od.
3. If (O, H) is a third manifold and
p: N — O

then
(potp)s = thu 0y
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Figure 3.13: Pullback and exterior differentiation.

Figure 3.14: Pullback and composition.
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A special important case is the one in which the map ¢ : # — A’ is a
diffeomorphism between two manifolds .# and .#’. Then ¢~ ' : A — M is
again a diffeomorphism. ¢, maps forms of .#” at ¢(m) into forms of .# at m and
(¢~ 1) maps forms of .# at m into forms of .#Z" at ¢(m). At the same time d¢
maps vectors of .# at minto vectors of .#’ at ¢(m) and d(¢~') maps vectors of
A at ¢(m) into vectors of .# at m. Using the above relations and remembering
the definition 3.16 we can induce in a canonical way a map between tensors.

Definition 3.37 (Tensor maps induced by diffeomorphisms)

Let M and A" be two differentiable manifolds and ¢ : M — MH' be a dif-
feomorphism. Then ¢ induces a map (¢)* : T (Mn) — T (M), which
associates to each (r,s)-tensor T at m an (r,s)-tensor ¢*T at ¢(m), according
to the definition below

(¢*T) (... 0 X5, X)) S
T (0. (). (0, doH (XY, doTH (X))

3.12 Vector fields and integral curves

Definition 3.38 (Lie Brackets)
Let us consider two vector fields X, Y € ¥V (#). The map

[— =] : V() x V(M) — V(M)
which associates to X and'Y the vector field [X,Y] defined as

[X,Y],(f) S XaY(f) ~ Ya(X(f))

where

(X,Y],=[X.Y](m) € Mn

Proposition 3.16 (Properties of the Lie Brackets)
The Lie brackets have the following properties:

1. Vf,g € C™®(A) we have

[fX,9Y] = fg| X, Y]+ fX(9)Y — gY (/) X;
2. it is antisymmetric, i.e. [X,Y]=—[Y,X];
3. it satisfies the Jacobi identities, i.e.

(X,Y],Z]+[Y,Z],X]+ 2, X],Y] =0.

Definition 3.39 (Integral curves of a vector field)

Let X € V(M) be a smooth vector field on a manifold (A ,F). A smooth curve
o on M is an integral curve of X if the tangent vector to the curve at all its
points coincide with the values of the vector fields evaluated at those points, i.e.
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Figure 3.15: Integral curves of a vector field.

Proposition 3.17 (Equation satisfied by integral curves)

Let (A, F) be a manifold and V' a smooth vector field on .# . Let us consider
me U C A with (U,p) € F chart of M with coordinate functions (x1, ..., Tm)
and let o(t) be a smooth curve on A, such that 0 € (a,b) and 0(0) = m. o is
an integral curve of V- on U if and only if

dO’i
dr

-‘ =vi0o¢p Hoi(t),...,om(t)) for i=1,....m and teo '(U),
t

where we have
1,m a
Viv = ;—
=3 g

and
0 =1x;00.

Proof:

By definition 3.39, o(¢) is an integral curve of the vector field V' if and
only if &(t) = V5@). But by definition 3.6 this is true if and only if

dol, (d%D — Vo (3.5)

By definition of differential we can write

dol: (diﬂt) :1’2’" WL 3?“]0@)

(3

using the coordinate system (U, ¢); moreover, always in (U, ¢), the local
expression of the vector field V' along o gives

1,d 9
Voo =L uto) |
; 0z | o)

Substituting in (3.5) the last two equalities we thus get that o(t) is an
integral curve of V' on U if and only if

1,m 1,d

> WL 8?5,-L@ =2 ule®) 821‘L(t>’

i T
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i.e., since the 9/0x; are linearly independent, if and only if

dO’ i
dr

—‘ =v;0¢ (o1(t),...,om(t), i=1,...,m, t € ¢~ (V).

O

Proposition 3.18 (Existence of integral curves)
Let (M ,F) be a manifold and V' a smooth vector field on M. Nm € M there
exists

a) ap and by € R U {+o00} U {—00};

b) a smooth curve op: (am bp) — M
such that:

1. 0 € (ap),bm) and on(0) = m;

2. on is an integral curve of V;

3. 4f o’ 2 (V) — A is a smooth curve which satisfies a) and b) above,
then (a',b") C (am,bn) and o' = onl(a -

Moreover if Vt € R we define

¢) D= {qe€ Mt (agby)} C M;
d) ®Y : D, C M — M defined by DY (p) = op(t);

then
4. Yme M, there exists A open neighborhood of m and € > 0 such that
OV (-):(—e,+e) x A — A

def. op(t), is smooth.

oY (p)
5. 9 is open Vt € R;
6. Uyso %t = M ;
7. ®Y 1 Dy — Dy is a diffeomorphism with inverse ®Y,;
8. Vs, t € R:
(a) supp (®Y 0 ®Y) C Dyys;
(b) supp (®Y 0 ®Y) = D4y if st > 0;

(c) in supp (BY o ®Y) we have DY o @Y =Y.

Definition 3.40 (Flow associated to a vector field)
The map <I>X)(—) = ®V is called the flow associated with the vector field V.
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Figure 3.16: Flow associated with a vector field.

Figure 3.17: Lie derivative of a vector field.

3.13 Lie derivative

Definition 3.41 (Lie derivative of a vector field)
Let (M, F) be a manifold and let V' and W be two smooth vector fields on .4
and let ®V be the flur associated with V. Let us consider me .4 and

ddV,(Ygvim) =Y d
£y W), " fig SEIEOIZZE D (@0, (Y gy ) €
t=0

t—0 t - dt

(£v W) is the Lie derivative of W in the direction of V' at m.

Definition 3.42 (Lie derivative of a 1-form field)

Let (M ,F) be a manifold, let V and w be a vector and a 1-form field on A
respectively and let ®YV be the flur associated with V. Let us consider m € M
and

v
def. .. (2 )i(wWay(m) —wn  d
(£vew), = lin n ~

| @) wor) < e

(Lyvw)p is the Lie derivative of w in the direction of V' at m.

Proposition 3.19 (Properties of the Lie derivative)
Let (A, F) be a manifold and V' a smooth vector field on 4 .
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1.YfeC®(H), £vf=V(f).
2. YW smooth vector field on M, £y W = [V, W].

8. £y maps smooth forms into smooth forms, i.e. can be considered as a
map £v : E(M) — E(M); moreover it commutes with exterior differen-
tiation, i.e. Yw € E(M), Ly dw = d(Lyw) and £v =i(V)od+doi(V).

The concept of Lie derivative can be extended to tensor of arbitrary rank,
in which case it satisfies some further properties, as follows.

Proposition 3.20 (Lie derivative of arbitrary tensors)
The S, T be arbitrary tensors, Then the Lie derivatives satisfies the following
properties:

1. it preserves tensor type;
2. it maps tensors linearly;
3. it preserves contraction;

4. it satisfies Leibnitz rule:

LvST =S LtyvT+ £yS®T.

Moreover if w is a k-form and Wy, W1, ..., Wy are smooth vector fields, then
5. .,EWO(w(Wl,...,Wk)):(£W0w)(W1,...,Wk)+

+> wWh, o Wiy, £w Wi, Wi, W)

0,k
6.  dw(Wo,...,Wi) =Y (-1)'W(w(W,,...,Wi,...,Wy)) +

%

+Z (W, W], W W, W),

1<j

Proposition 3.21 (Component expression of the Lie derivative)
The Lie Derivative of a vector field Y in the direction of the vector field X can
be expressed in a coordinate basis as

1,m Vi
(£vY)’ Z {8% :I:Y]] '

J

Proof:

We call m’ a point along the integral curve of V' passing through m at
parameter distance ¢t. Thus

n' = &) (m).
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Figure 3.18: Component expression of the Lie derivative.

From the definition of the Lie derivative we see that we need to evaluate

d
AR
=0

and we start with
v i
(d‘I)—t (YQY(m)))
applying the definition of differential and of tangent vector. We get

(d@yt(Y@Y(m)))i = (d(I’Yt]m’(Ym’))(xi)
= Yu (CEiO(I)Yt(mI)>

1,m

= E(Ym/)j aim]_—‘ml (mz o CI)‘—/t(m/)>

J

R (@Y, @)
= > ) 2]

. U
J m

Of this expression we want to compute the derivative with respect to
t and evaluate it at ¢ = 0. There are two factors, we are going to
use the chain rule and thus compute first the derivative of each factor,
remembering that m’ contains a ¢ dependence as a function of m through
he flux. We obtain in first place

1,m ,m
Yj(m’w _3 {aifj(m’)@w 5y,
=0 zk: &m dt =0 2};8
Moreover
dom@Y@)] 0 dn(®Y.@)
dt ox; — O dt =0
o )
= _— —Xl
5 (X0
_ _6X,-
o axj
Using the two results above we obtain
1,m
d v \ ') 9z (9, (n'))
— P2, (Y
dt—‘t:o (2= <I>Y(m) " { Ox; Y t:0+

J
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o2 [ ]

.S iy X

which completes the proof.

3.14 Integration on manifolds

Definition 3.43 (Integral of an m-form (local))

Let (M ,F) be a manifold of dimension dim (#) = m and let (U,¢) € F
associated to the coordinate system (x1,...,%m). Let w be an m-form on A
such that supp (w) is compact in A . Then

Proposition 3.22 (Local expression of the integral)
If in the local coordinates (U, ¢) we write w = fo dziA ... A dx,, the following
formula holds:

/ (stl)*(w) :/ (f¢0¢71)d7’1 A ANdr,.
#(U) o(U)

Proof:

To prove the equality we have to evaluate (¢~ ').(w) in the coordinate
neighborhood (u, ¢). This yields

(@ Delw) =

& N u(fodzr A ... Ady,)

(
(6 V)u(fo) - (¢ Vudar A .. A (¢ )dm
(
(

= (o067 (9 udzr Ao A (@) udam
= (fsod ") -driA...Adrm,
where the last equality holds since
(¢ udz; = d((¢™)wzs)
= d(ziog™")
= d(riogo¢™")
= dr;.

This completes the proof.
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Proposition 3.23 (Coordinate independence of the local integral)
The definition 3.43 is independent from the choice of the coordinate neighborhood
on M .

Proof:

Let (U, ¢) and (V, ) be two coordinate neighborhoods with coordinate

functions (z1, ..., £m) and (y1, ..., Ym) respectively. Let us consider
the integral of an m-form w on some domain W C UNV. On W we
have

w = fedx1 AN... Ndzm
as well as

w = fypdyr A ... Ndym.
The change of coordinates is described by ¥ o ¢~ " which enters through
its determinant |0y;/dz;| in the relation between fy and fy, since

1

8yi
dyy A ... ANdym = —
fudyr Y fw'awj

drxi A ... Ndzm,

so that 5
fo= g, | fo = 18097 Ifu-

Moreover we remember the following property of the pullback

(pot™ =¥ 1)s 0 du.

Then

[}w _

(Y™ Hw

(W)

(fy o™ Vdpi A ... Adpm
(W)

T~

(foob Mpod Moo dri A... Adrm
pop=1)(p(W))

(foov Mpod ™ Dpod tdriA... Adrm
pop=1)((W))

(|podp ™ fpod NdriA...Ndrm
w)

Il
—

Il
T

(food " )dri A... Adrm.
)

Definition 3.44 (Integral of an m-form (global))

Let (A, F) be an orientable differentiable manifold of dimension dim (#) =m
and let O C F be an orientation of #. Let w be an m-form on # with
supp (w) compact in A . Let (Z,P) be a partition of unity subordinated to the
open covering {Ua}(UQ,¢7(,)EO' The integral of w over M is

/j{w def- Z frw.

vez’V
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Proposition 3.24 (Independence from the partition of unity choice)
The definition 3.44 is independent from the choice of the partition of unity.

Proof:

Let us take as granted all the assumptions in the definition 3.44 and let
(%',P') be another partition of unity subordinated to the open covering
{Ua} (v, .4a)co; then the following chain of equalities holds:

> [ v Z/V( 3 f’w)fvw

Vez Vez Ve’

= X 5 [ v

VerVv'exn'

DN s (3.6)
vea 7

nv’

viexn'

The last equality sign holds because fy is different from zero only inside
V and f{,, is different from zero only inside V', so the product fi,, fv is
different from zero inside V' N'V. Since the last formula is symmetric
we can proceed back with the chain of equalities, i.e.

!
S [hom S [ s
vez”’V vieg 'V’

which completes the proof.
O

Proposition 3.25 (Stokes theorem)
Let A be an orientable differentiable manifold of dimension dim (.#) = m with
boundary 0.4 . Let w be an (m — 1)-form over .#. Then

/ dw:/ w.
M oM

If A is such that 0.4 =), then
/ dw = 0.
M

Since .# is orientable, 0.4 is also orientable and we assume on it the induced
orientation (and of course the induced manifold structure (topological and dif-
ferentiable)).

3.15 Riemannian and Lorentzian manifolds

Definition 3.45 (Riemannian metric)
Let us consider a manifold (.#,F) and the set

M) = U {(—= =) | (= =) p @ positive definite metric on  Mp} .
me. A
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A differentiable map

defined as

is called a Riemannian metric on . .
Differentiability is defined, as usual, in terms of vector fields, i.e. (—,—) is
differentiable if for every choice of vector fields V and W on an open set U C .#

the function
(V,W):U —R,

defined as (V, W) (m) aet- (Vm, Wh),, is differentiable.

Proposition 3.26 (Existence of Riemannian metric)
Every differentiable manifold admits a Riemannian metric.

Proof:

The proof of this statement proceeds along the same line we used for the
characterization of the orientation on a manifold. Let thus (.#,F) be a
differentiable manifold, of dimension m. Let us consider a partition of
unity (%, P) subordinated to the cover U = {U| (U, ¢) € F}. For each
m € A,V € # such that m € V. Moreover U € U such that V C U
so that Vm € V C U in .#n the coordinate map ¢ associated to U with
coordinate functions z1, ..., Zn, induces the coordinate basis {9/ 0z;|m
}i=1,...,m. Thus Vm € V we can define a scalar product (—, —),, by

9 9N _s.
81’1-’8@- Vi E

(== =3 =y

Vez

Then

is a Riemannian metric on ..

Definition 3.46 (Lorentzian metric)
Let us consider a manifold (.#,F) and the set

) = U {{—=, =) pl (= =) pa metric of signature m —2 on My} .
me A

A differentiable map

defined as

1s called a Lorentzian metric on 4 .
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In what follows if we will refer to a metric, without specifying if it is Riemannian
or Lorentzian, we will assume that the type of metric is not relevant, e.g. the
results hold for the Riemannian as well as for the Lorentzian case.

Proposition 3.27 (Existence of Lorentzian metric)
A paracompact manifold admits a Lorentzian metric if and only if it admits a
non-vanishing line element field.

Definition 3.47 (Isometry between manifolds)

Let #,F and A ,G be two differentiable manifold and ¢ : M — N a map
between them. ¢ is an isometry if it is a diffeomorphism and if its differential
d¢ is a vector space isometry VNme M, i.e. if Vme A

(d¢(v),d¢(w)>¢(m) = (v,w), , Yv,we .y

3.16 Connection and covariant derivative

Definition 3.48 (Connection at m € .#)
Let A be a differentiable manifold. A connection at m € .4 is a map

D(—, =), Moy x V(M) — M,
such that:
1. D(vg, W), is bilinear in vy, and W ;
2. ¥f: . H# — R differentiable,
D (v, fW) = 0n( /)W n+ f(m)D (vp, W).

D (vg, W), is called the covariant derivative of the vector field W in the direc-
tion of vy at m.

Definition 3.49 (Connection on a manifold)
Let A be a differentiable manifold. A connection on .# is a map

D (=, =) : V(M) x V(M) — V(A),

such that:

1. D(V,W) is bilinear in V and W;

2.¥f:. 4 — R differentiable,

D(fV,W)=[fD(V,W);
3. Vf:.#4 — R differentiable,
DV, fW)=V(f/)W + fD(V,W).
We have that Vm € .#
(D(V.W))a & D (Va, W),

where D (Vy, W), is a connection at m € ..
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Definition 3.50 (Symmetric connection)
Let A, F be a manifold and D (—,—) a connection on . D is symmetric if
VYV, W wector fields on M, then
D(V,W)—D(W,V)=[V,W].
Definition 3.51 (Connection in coordinates)

Let (A, F) be a manifold of dimension dim (.#) = m with connection D (—, —)
and let (U,¢) € F with coordinate functions x1,...,%y,. Then in the chart

(U, ¢) we have
b (833z 6‘:cj> Z “ 81:

Iy, :U—R

with

differentiable functions on U C M .

Proposition 3.28 (Characterization of symmetric connections)
Let D (—,—) be a connection on a manifold A4 ,F and (U,¢) € F a chart of

M with coordinate functions (x1 , ... , xy). The following conditions are
equivalent:
1. D(—,—) is symmetric;
2D (o) = D (&)
3. Ffj = Ffz
Proof:

1 =2 Let us consider a symmetric connection. In a coordinate
basis of .#n, as is the one induced by the given chart, the
Lie Brackets of two arbitrary basis vectors vanish, i.e.

0 0
[ax,a;}—o
0 0 0 0
D(axi%)‘l’(%j’axi)*
0 0 0 0
D(%%)—D(%%)'

a
2 = 3 If we express

0 0 0 0
D(%%)‘”(%%)

Thus

or
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in terms of the connection symbols, the above equality be-

comes )
»m a

Tk _ F’?.) — =0.
Ek: ( “ 7% 01%

But, since {0/0x }r=1,...,m is a basis of .#n at each point
m € U C .#, the 8/0zy, are linearly independent, i.e.

k k k k
Uiy =T =0 = Iy =T
O

3 = 1 We consider to arbitrary vector fields V' and W and write
them in a coordinate basis associated to a given chart (U, ¢)

with coordinate functions x1, ..., Tym:
1,m
. 3]
\ %4 = Vi
1,m 8
w = E Wi —— 3.7

We first compute

D(V,W)

Il
>l
s
[
Sle
Se
S—

1,m
& om0 o o
N ZZ{ * Ox; 8m]+vl D(@xi’ax‘j)]
N Ow; 0 d

= Z “Bu; 0z; ZF””’“”@

i,k

Then, by exchanging V' and W we also obtain

1,m

ov;
DW,V)=> w wy 69[; Zrﬂvlea
J i i

%) 4,7,k

so that

D(V,W)—-D(W,V)=

1,m

72 anjiiwﬁvi 6 +
N iy Zal’i 811]' Jafj 8%’1

+ Z (15 =130 wiws aa

0,5,k

DT ow; 9 Ov; 0
ZJ { " Ox; 8:&] J@mj 83@1} (3.8)
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since by the assumptions, I' fj = F;“Z We now compute
the commutator, remembering in the first step result 1. of
proposition 3.16:

[va} = |:Zvl ,72 Jaij:|

a2 2
= - 105 amlva

Zj
,m 1,m
8w] ov; 0
+Z ' Ox; Oz 12: 1 9z Oz
1,m
_ Oow; 0 8111 1o}
- ; { " Ox; 8:15] 8;1:] 83:1} (3.9)

The first term in the equation before the last vanishes since
we are in a coordinate basis and we thus see from (3.8) and
(3.9) that

D(V,W)—D(W,V)=[V,W],

i.e. the connection is symmetric.

This completes the proof.

Proposition 3.29 (Covariant derivative along a curve)

Let o(t) : [a,b] — A be a differentiable curve on a manifold (A ,F) with
connection D (—,—). Let V(t) be a differentiable vector field along o. There
ezists one and only one map which associates to a vector field V' along o another
vector field DV /dt along o, the covariant derivative of V' along o, such that:

D(V+W) _DV  DW.

1. =
dt dt dt ’

' D(fV) df DV
2. Vf :[a,b] — R we have Tl V4 f— s

3. if Y € V(A) is a vector field on M such that V (t) =Y (o(t)) then

% —D(E(),Y), . (3.10)

Proof:

Let us choose a chart (U, ¢) € F on the manifold (.#, F) with coordinate

functions (z1, ..., m). and let us consider a curve o(t) = (z1(t), .
Zm(t)). We then have

1,m
. — dx;(t) 0
(t) = df )ax-'

i
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To prove the existence we use property 3. as an ansatz, i.e. we define

DV e
=L DY)

this is a good definition since the operation defined by the connection
is local, i.e. it depends only on the values of the vector fields at a given
point and thus it makes sense for each vector field which is defined at
that point. Moreover we have:

D(V +W)
dt

o(t)

= D(t),V+W),,
= D (d(t)a V)a(t) + D (d(t)v W)u(t)
DV DW
T T Ta
so that 1. is satisfied. Then we have
D(fV
UV = DG, v),0
= (@W)NHV +[D(E®), V),

= S TR (N +FD(E[), Ve

df DV
= Yy’
dt + f
and 2. is also satisfied. 3., of course, holds by definition, so the only
property we still have to prove is uniqueness. To establish it we rewrite
DYV /dt using the local expression above for &(t) and also writing locally
the vector field along o(t) as

1,m

‘ 0
=> i) 5,

; J

Then from equation (3.10) we can obtain the following chain of equali-
ties:

1I,m

pv  D(X)" /o)

dt o dt
N - <dvét oz, Y 8/830])
)

1,m 1,m
_ - d’Uj (t) i ) . dml(t) 8 i
o - |: dt (993]' + 1}3 (t)D ( dt (91'1‘7 a.iL‘j
dve(t) 0

- vk (t) o dzi(t) o 0
a zk: dt Oz + ZZJ: vi () dt D Ox;’ Ox;
1,m 1,m

W 0 KR () 0
- ; dt 8mk+zvj(t) dt F”axk

¥

_ Zm (dvk Zrk d:vz . )) 8‘3% (3.11)
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We thus see that the covariant derivative along o(t) is completely de-
termined by the connection coefficients in a unique way, i.e., given the
connection, it is unique. This completes the proof.

d

Definition 3.52 (Parallel vector field along a curve)
Let A, F be a manifold with connection D (—,—) and let o(t) be a curve on
A . A vector field V(t) along o is parallel along o if

DV
o

Proposition 3.30 (Characterization of parallel vector field)

Let A, F be a manifold of dimension dim (.#) = m with connection D (—,—).
Let (U, ¢) € F be a chart for .4 with coordinate functions (z1,...,Tmy) and let
o(t) = (z1(t),...,xm(t)) be a curve on A . A vector field V() = Zzlm v;(¢)
0/0x; along o is parallel along o if and only if

dop(t) 2 dai(t)

dt dt ijUj(t) =0 k=1,...,m. (312)
]

Proposition 3.31 (Existence of parallel vector fields)

Let A, F be a manifold and o(t) = (z1(t),...,xm(t)) be a curve on M. Let
vy € M) be a tangent vector to A at 0(0). There exists one and only one
parallel vector field V' along o with V (c(0)) = vy.

Proposition 3.32 (Parallel translation is an isomorphism)
The parallel translation ¢ along a curve is an isomorphism

P : %O'(O) — j/o(t) , Vtela,b].

3.17 Interplay between connection and metric

Definition 3.53 (Compatibility condition)

Let (A ,F) be a manifold with a metric (—,—). A connection D (—,—) is com-
patible with the metric (—, —) if VV W, parallel vector fields along an arbitrary
given curve o, it holds that (V, W) is constant along o.

This means that V¢ for which o is defined, the parallel translation along ¢ from
a(0) to o(t) defines an isometry between .#, oy and ).

Proposition 3.33 (Characterization of compatible connections: I)
A connection D (—,—) on a manifold (A ,F) with metric (—,—) is compatible

with the metric if and only if YV, W parallel vector fields along an arbitrary
curve o, the equality

% (V(t), W (1) = <IZ;/,W> + <[ZV7V>

is identically satisfied.
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Proof:

=) Let us choose Py, ..., Py, m vector fields along o which are or-
thonormal at a given point of . We can assume without restriction that
they are parallel along o (since given a vector at a point of a curve, to
parallel propagate it along the curve we have only to solve the differen-
tial equations (3.11) = 0 with exactly the components of this vector as
initial conditions). Then they are also orthonormal along o, since their
orthonormalization condition

(Pi(t), P;(t)) = 0i;

is preserved along o precisely because the P; are parallel along o.
At every point of o, we can thus write two arbitrary vector fields V,
W in terms of the orthonormal basis composed by the m vectors P;, i.e.

1,m

V() = ) vilt)Pi(t)

%

1,m
W) = > w(t)Pi(t).
Moreover, since P;, i = 1,...,m, are parallel vector fields, we also have
1,m 1,m
DV () — dv;(t) - DP;(t)
= P; i(0) ——
dt T dt )+ Z ul) =g
2 dvi(t)
= Pt
- S P
1,m 1,m
DW (t) — dw;(t) - DP;(t)
dt ; di (1) + ; w; (1) dt
1,m

Remembering that the P;(t) are orthonormal along o, we can now com-
pute

<%,W> — <2;: dU;it)Pi(t),Zw]'(t)Pj(t)>

 KRdu(t) ,

- X% i (t) (Pi(t), P;(t))
_ ' d’Ui(t) ) .

= - dt ](t)6l]
 Rdult)

- dt i(®)

and exchanging V' with W

1,m
DW\  Rdwi(t) .
<V7 dt >7 - dt vl(t)a
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Summing the last two result we thus get

(5w () - £ (2500
- E)

= £<V5W>7

ISH

which completes the proof of this implication.
<) If V and W are parallel along o then DV /dt = DW /dt = 0, i.e.

d
SV (1), W (1) =0

so that
(V (t), W(t)) = const.

and D is compatible with the metric.

Proposition 3.34 (Characterization of compatible connections: IT)

A connection D (—,—) on a manifold (A ,F) with metric (—,—) is compatible

with the metric if and only if VV', W | Z wvector fields on # it holds that
Z((V,W)) = (D (2,V), W)+ (D(Z,W),V). (3.13)

Proof:

Let o be a differentiable curve on .# such that

c(0) = meA
(5'(0) - Zm E L%m.
Remembering these settings we preliminarily define the following quan-
tities:
Zn((V,W)) (3.14)
@i limo (Vo Woe) (3.15)
%—It:07w> + %—‘t:()’v> (316)
(D (Zu, V), W) + (D (Zu,W),V) (3.17)

= ) We now start with the direct implication. We can compute the
directional derivative of the function (U,V) in the direction of Wy
as the derivative along the curve o at ¢ = 0: since this directional
derivative is a local expression it does not depend on the chosen curve,
provided it has tangent vector W, at m. This says (3.14) = (3.15). Using
proposition 3.33 we know that (3.15) = (3.16) and by definition of the
covariant derivative along a curve (3.16) = (3.17). Thus (3.14) = (3.17)
Vm € .4, which is equivalent to (3.13), the result to be established.

< ) To prove the converse we observe that now (3.13) holds, so that
(3.14) = (3.17) Vm € .# . But again, by the same considerations we made
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above, (3.14) = (3.15) and (3.17) = (3.16). So we have established that
under the assumed conditions (3.15) = (3.16) i.e. that VV, W vector
fields along a curve o

d DV DW
(VW)= <Tt ,W> + <Tt ,V>

so that proposition 3.33 assures the connection is compatible.
O

Proposition 3.35 (Uniqueness of symmetric compatible connection)
Let (A, F) be a manifold and (—,—) a metric on .#. There exists one and
only one symmetric connection on .# compatible with the given metric.

Proof:

We will prove the uniqueness: let (U, ¢) € F be a coordinate system
with coordinate functions x1, ..., Tm. As usual, we have that locally
the connection can be expressed as

1,m
0 90\ ~x—pk O
D (81’1-’ 8.%‘1') o - Fij@xk

and the Riemannian metric as

_[ 9 9
Imn =\ Bz’ Ozn |-
The compatibility condition implies
o0 /9 0N _ [p(9 9\ 9\,
8a:j (9l’k’ 8xl - 8xj’ 8xk. ’ 8xl
0 0 0

and permuting the indices j, k and [ we also get

0 0 0 0 0 0
a*m<a*m’az> = <D(87k’az)%>+ (3.19)
0 0 0
D= =) =
+< (Bxk’axj)’axl>
0 /0 9N\ _ [p(2 8 o\,
(91‘1 a:Ej ’ 817}9 - 8xl ’ 8mj ’ 8%

0 0 0
{0 (an0r) 505
o 0 0
- (2(aam) o)t
0 0 0
+<D(8—m7%)7%>, (3.20)

where in the last equality we have used the fact that the connection is
symmetric and the arguments are element of a coordinate basis, so that
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result 2. of proposition 3.28 applies. Summing side by side (3.18) and
(3.19) and subtracting (3.20) we get

o0 /0 0N 0 /0 9N 9 /9 0 \_
Oz \ Oz’ Oy Oz, \ Oz’ Ox; Oz, \Oz; Oxi )
o 0 19} 0
(2 (e ae) 3w+ (2 (5 2) )+
0 0
+ <D (6‘xk 83:1) 8x3> < (Bmk Bx]> ’8ixl> +
1o} 0 0
B <D <ax] axl) axk> <D ( %) 7>
o 0 o 0 0
= <D (axJ axk) axl> <D (T "oz, ) om
o 0
=2(D|—,—
< (823]‘7 8l‘k) 8a71>
where in the last line we again used the symmetry property of the con-
nection.
The equality coming from the first and last lines can be rewritten, using

the metric the and connection symbols in the chosen coordinate system
that we have written at the beginning of this proof, as

1,m

—019jk + O0jgrl + Okgij = 2 Z T gn

h

or, acting with the inverse of the metric!, as

P Im
=3 Z (—0igjk + 059kt + Ok gij) (3.21)
l

. To prove the existence we use the definition above and verify that
all properties of a connection are satisfied.
|

Notation 3.1 (Compatible Symmetric Covariant Derivative)
When we consider the unique symmetric connection compatible with a metric
on a manifold, we are going to use the following notation:

VyW =D (V,W).

3.18 Geodesics

Definition 3.54 (Geodesic)
Let o be a curve on a manifold (A ,F) such that the vector field &(t) tangent

LHere we will denote the inverse metric tensor as (g7 1)z, i.e.

1,m

1,m
Z(g_l)ikgk]’ = Z 9ir (9™ ks = 8ij.
% %

Of course we have g;; = g;; and (g7 1) = (g7 1) ji-
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to the curve is parallel along the curve, i.e.

D& (1)

=0.
dt

Then o is a geodesic on A .

Proposition 3.36 (Geodesic equation)
Let o be a geodesic on (M, F) and let (U, ¢) € F be a chart of M with coordinate

functions (x1,...,%m). 0 is a geodesic if and only if
dx t) dx;(t)
g dai( J
dt2 E I 7 =0, k=1,...,m (3.22)

where g o o(t) = (x1(t),...,zm(t)).
Proof:

In the given coordinates the tangent vector & has components:

(dx;t(t)w’ dx:;t(t)) .

But, by the definition above, o is a geodesic if and only if this tangent
vector is a parallel vector field along o and this is true if and only if it
satisfies the m differential equations (3.12) of proposition 3.30, where
now v; = dx;(t)/dt. Thus a curve o is a geodesic if and only if locally
the m equations (3.22) are satisfied.

O

Definition 3.55 Let (A4, F) be a manifold and let me A and v € My be a
point of A and a vector tangent to .# at m respectively. The exponentiation
of v at m is the point p € A which is a unit parameter distance away along
the unique geodesic o, passing at m at t = 0 and having at m velocity v. The
exponential of the vector v at m is thus defined as

expp(v) oy (1)

and is a map

expy: W C My — M.

If k is a constant then of course we have

d
— kt) =k
so that

expy(kv) = oy (k).
If we interpret k as a parameter we thus have that

7u(t) = expy(tv)

is the only geodesics with ¢(0) =m and &(0) = v.
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Figure 3.19: Exponential of a vector.
Proposition 3.37 The differential of the exponential map at m is an isomor-
phism of My, in particular

d(expy) o = Lan-
Proof:

To understand d(expy) let us remember that according to its definition,
the differential is a map between tangent spaces. In this case the tangent
spaces are:
1. the tangent space to the tangent space .#p at the origin
0, which we could denote with (.#n)g; since #n is a vec-
tor space, we can up to an isomorphism use the following
identification

(Mn)o ~= AMn;
2. the tangent space to .4 at m, i.e. .n.

Thus up to an isomorphism
d(expy) : Mn — M.

We are now interested in the action of d(expp) on .#n. To grasp it
we can take a curve in .#pm which has v as tangent vector, consider its
image under expy and look for the tangent vector of this image (which
is a curve on .Z).

As a curve in .#n with tangent vector v at the origin 0 we can choose
the line I(t) = tv, —e < t < +¢, for some small enough € > 0. Of course

%Lzu) — .

The exponential then maps this curve into the unique geodesic v(t) =
expp (tv) passing through m with tangent vector

| w=v

since expy is defined exactly in this way. Thus

d(eXPmﬂo(%kl(t))=%Lv(t) = dlexpa)lo (v) = v
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and this holds Vv € ./, i.e.

d(expy) ] o = Lan-

O

From the above results and the implicit function theorem we conclude that the
exponential map is a local diffeomorphism around 0 € .#4, onto a neighborhood
U C A of m. It maps lines in the tangent space in geodesics of .# passing
through m and having tangent vector at m which is the director vector of the
line.

3.19 Curvature

Definition 3.56 (Riemann curvature tensor)
The Riemann curvature tensor is a map Fock

R(—, =)= V(M) X V(M) X V(M) — V (M).

such that for all triples of vector fields V., W, Z, the vector field R(V ,W)Z
is defined as

RV W)Z=D((V,(D(W,Z)))—DW,(D(V,Z))—-D(V,W],Z).

If we choose a basis on the tangent space {e;};=1,..m, and let {Ej}j:L,_,m be
its dual basis the components of the Riemann tensor are defined as

def.
Rlijk = EZ(R(ej, ek)ei).

If we define the second covariant derivative of a vector field Z as the covariant
derivative of the covariant derivative of Z, i.e. D(,D(,Z)) = D(,(D (,Z2))),
then in component notation we have

l l
Z%ij = Zsizj-

We will now compute explicitly D (V, (D (W, Z))) in its local form, i.e. when
a given basis {€;}i=1,..m in the tangent space is fixed, so that V' = Z}m vi€;,
W = Zjlm wje; and Z = 3 ;"™ zpep. We start with

DW,z) = D(W,Z,)
1,m 1,m
= D ijej,z,zkek
J k
1,m
= ZD(wjej7zkek)
Jik

1,m
= Z D (e;, zrex) w;
3k
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1,m

= > lej(z)wser + D (), ex) w;z]
jik
1,m 1,m

= Z e;(zp)w,er + Z F?kwjzkeh
J.k h,j,k
1,m 1,m

= ijej(zh)eh + Z F?kwjzkeh
j.h h.jk

1,m 1,m
— E ) . E h
= wj 8JZh—‘r ijzk ey
h,j k
1,m
= Ezh;jw]’eh»
h.j

so that

1,m

(D (W, Z))z = Z ik Wi -
k

Generalizing we then have

1,m
D(V,(D(W,Z))) = Y (D(W,Z))n;vsen

—
1,7ZL 1,m

= > O zmrwn)yvsen
h,j k
1,m

= > (znwwn)jvjen,

h,j,k

so that

1,m

(D(V,(D(W,2))i =Y _(2ikwh) ;-
gk
We remember that in terms of the dual basis {Ex}x=1,... . We can also write
(D(W,Z)); = E{(D(W, Z))

or, of course,

Proposition 3.38 (Riemann tensor and covariant derivatives)
The Riemann tensor expresses the non-commutativity of the second covariant
derivatives of a vector field.
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Proof:

We are going to use the definitions above. From the definition of the
Riemann tensor we can extract the components thanks to

E,(R(V,W)Z)

E(D(V,(D(W,Z)))) - E(DW,(D(V,Z2))))+
_El(D ([Vv W] ?Z))

1,m 1,m

= D (mwe)yv; — > (21kvr) 5w, +

J.k gk

1,m
=Y 2V, Wl
k

1,m
= ) (zukywrv; + 2pwegv;) +
ik
1,m

= 2k vew; + Zkvrw;) +
I

1,m
= gk (wiiv; — vrgw;)
7,k
1,m 1,m
= § Rlik;j WEVj — E Zlsk;j VkWj
J.k J.k

1m 1,m

= E ZlkjWEV; — E 2155k UV Wk
7,k 7,k
1,m

= > (2uks — zu0) vy

Jk

Of course the left-hand side gives

1,m
Z 1
EI(R(V, W)Z) = R ijkvjwkzi
i,5,k
so that
1,m 1,m 1,m
I
> (2w — zign) vywe = Y [ Y Rlijrz | vywe
J.k g,k i

and, since V and W are arbitrary vectors,

1,m
!
E R ijrzi = 21,05 — 2155k-
i

Proposition 3.39 (Riemann tensor and coordinate basis)
In a coordinate basis, the Riemann tensor can be expressed in terms of the
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connection as

1,m

R'jj = WLy, — 81Fk]+z ~T3.I%) -

Proof:

When we consider a 1-form w and three vector fields X, Y and Z the
properties of the connection imply

D(X,ne®D(Y,Z)=D(X,n)®D(Y,Z)+n®D((X,D(Y,Z)).

But the covariant derivative preserves contractions, so that the above
implies:

n(D(X,D(Y, Z))) = XD (Y, Z))) - (D(X,n)(D(Y,2)).

We can now consider the components of the Riemann tensor, i.e. once
we fix a basis {ei}izl,,,,m in the tangent space and the corresponding
dual basis {E;}i—1,...m in the cotangent space, the R';;x defined above

R'ju = Ei(R(ex, e1)e;).
We now have
Ei(R(ex,e)e;) = Ei(D(ex, D(ei €;))) — Ei(D(er, D (ex, €;))) +
—Ei(D ([ex, el] ,e;))
ex(Ei(D (e1,€5))) — (D (ex, E:))(D (e, €5)) +

—ei(Ei(D (ex, €;))) + (D (e, Ei))(D (ex, €;))
_Ei(D ([elw 6[} 7ej))'

If we specialize to a coordinate basis in the tangent space and to its
dual, the last term vanishes, because so so the Lie Brackets and the
above turns into

1,m 1,m
7 - 7 a - b 8
Ry = &tk Z Lo 8 - (= ;Fkadx )(; Ly 78%) +
Zrk D+ (=S T (3T
8Il ]8 - @ Y Jal‘b
8 1,m

= TM(F;J) + Zriarfj +

1,m

Fk] Z Flark]

1,m
OuTly — ATy + 3 [Thally — TiT

a

as stated.

(©2004 by Stefano Ansoldi — Please, read statement on cover page



“Differential Geometry”. [3.19].65

Proposition 3.40 (Properties of the Riemann tensor)
The Riemann tensor has the following symmetries:

Rijab = _Rijba
Riabc + Ribca + Ricab = 0. (323)

Moreover it satisfies the Bianchi Identities, i.e.
Rijab;c + Rijbc;a + Rijca;b =0.
The above can also be shortly written as

R’ j(ab)
R [abc]
le [abic] =

o o O

(3.24)

Definition 3.57 (Ricci tensor)
The Ricci R;; tensor is the trace of the Riemann tensor, i.e.

1,m

Rij = RFy;.

k

Till now we have assumed to have a generic connection. If a metric is defined on
the manifold .# and we consider the unique symmetric connection compatible
with the metric, additional properties of the curvature follows. Moreover we
can use the metric to raise and lower indices: thus we can define

def.
Rijri =" giaR" ji-

Proposition 3.41 (Additional symmetries of the Riemann tensor)
Let us consider the unique symmetric compatible connection derived by a metric.
The Riemann tensor then satisfies the additional symmetries

Rapij = —Rpaij(or equivalently R (qp);; = 0)
Rabij = Rijab-

Proposition 3.42 (Symmetries of the Ricci tensor)
Let us consider the unique symmetric compatible connection derived by a metric.
The Ricci tensor is symmetric, i.e.

R;j = Rj;(or equivalently Rj;;; = 0).

Definition 3.58 (Ricci scalar)
Let us consider the unique symmetric compatible connection derived by a metric.
The Ricci scalar is the trace of the Ricci tensor, i.e.

R Ri. — 9 R;;.
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Definition 3.59 (Einstein tensor)
Let us consider the unique symmetric compatible connection derived by a metric.
The Einstein tensor is the symmetric tensor defined as

def. 1
Gij = Rij — 9ii -

Proposition 3.43 (Differential identities of curvature tensors)
Let us consider the unique symmetric compatible connection derived by a metric.
Then the following differential identities hold

Rk = Rjk — Rjky
1
Rai;a - §R;’i~
In particular the Einstein tensor is divergence-less, i.e.

G, =0.

)
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