
Chapter 18

Lecture 18

18.1 Einstein Equations

In the previous lecture we presented the mathematical structure of General Rel-
ativity, but we omitted actually the most important part. We gave some ideas
of how a manifold structure naturally embodies some properties that can be
seen as natural mathematical translations of the physical principles underlying
the theory, as we learned them from Einstein’s words in lecture 16. We also
quickly said, passing by, that the curvature of the manifold embodies somehow
the gravitational field, but without adding any precise or rigorous meaning to
our words. So we are still far from our ultimate goal: “find some quantities
that adequately describe the gravitational field and determine the equations to
which these quantities, i.e. the field, are subjected to”.

18.1.1 Action for the gravitational field

We are thus going to assume that the metric tensor is the collection of 10 fields
suitable for our newly (and still to come) description of the gravitational field.
According to some principles we laid down in lecture 3 we would like to derive
some equations for the gravitational field starting from a variational principle.
Mathematically this means we need to find a scalar function of the fields and
of their first derivatives to use as a Lagrangian density. Then we can construct
the action, i.e. our functional integral of the fields, and perform a variation to
obtain the field equations.

18.1.2 Variational principle

18.1.3 The Lagrangian density

We will take as a Lagrangian density the Ricci scalar R: this is the simplest
scalar quantity that we can construct with the metric, the first derivatives of
the metric and the second derivatives of the metric, in the sense that it is linear
in the second derivatives. No other nontrivial scalar quantities can be built
from the curvature tensor through operations that preserve the linearity in the
second derivatives. With apologies if this assumption sounds rather unjustified
at this time, we ask you to follow us in a (not so straightforward) calculation
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that starts by taking
L(g, ∂g) = R = gµνRµν

as a Lagrangian theory for a description of the gravitational field1.

18.1.4 Derivations of Einstein equations in vacuo

Let us thus tart with an action which is the spacetime integral of the Lagrangian
density R,

SG[g] =
∫

M

L(g, ∂g)
√
−gd4x =

∫
M

R
√
−gd4x,

where we remember that the Ricci scalar is given by

R = gµνRµν .

We will explicitly find the field equations for gµν associated to the above La-
grangian density by computing the variation of the action

δSG[g] =
∫

M

d4x
[√
−ggµνδRµν +

√
−g(δgµν)Rµν + gµνRµνδ(

√
−g)

]
. (18.1)

From equation (13.1) contracted, that is reported here in the notation we are
using now

Rµν = ∂αΓα
νµ − ∂νΓα

αµ + Γα
αβΓβ

νµ − Γα
νβΓβ

αµ,

we see that Rµν contains our fields gµν , their first derivatives (since Γα
βγ contain

derivatives of gρσ) as well as the second derivatives, since also the derivatives
of Γ’s appear in the Riemann tensor, of which Rµν is the contraction. From
the preliminary variation (18.1) we see that the second term in square brackets
already has is in the final form in which is useful for our computation. A little
elaboration is needed instead for the first and the last terms.

Let us start with the last one. We have to compute the variation of the
determinant of the metric,

√
−g. To this end we write the determinant as

the exponential of the logarithm of the determinant. We also remember that
given a matrix its logarithm and its exponential are defined in terms of the
corresponding power series (using matrix product). Then we have:

δg = δ(det(g))
= δ(exp(log(det(g)))
= δ(exp(Tr(log(g)))
= exp(Tr(log(g)) · δ(Tr(log(gµν))
= exp(log(det(g)) · δ(Tr(log(gµν))
= g · Tr(δ(log(gµν))
= g · Tr(gαµδgµν)
= ggµνδgµν = −ggµνδg

µν , (18.2)

where we remember that
gαµgµβ = δα

β

1If this discussion still does not satisfy you and you think that the following complications
are too much effort to be undertaken blindly, please consider that this effort will bring you to
know Einstein equations in vacuo.

c©2004 by Stefano Ansoldi — Please, read statement on cover page



Lecture 18 [18.1].107

so that
(δgαµ)gµβ + gαµδgµβ = 0,

i.e.
(δgαµ)gµβ = −gαµδgµβ .

We now turn to the first term, in which the variation of the Ricci tensor
appears, δRµν . We remember that the components of the Riemann tensor in a
given coordinate system are

Rα
µβν = ∂βΓα

νµ − ∂νΓα
βµ + Γα

βρΓ
ρ
νµ − Γα

νρΓ
ρ
βµ

so that the Ricci tensor can be written as

Rµν = ∂αΓα
νµ − ∂νΓα

αµ + Γα
αρΓ

ρ
νµ − Γα

νρΓ
ρ
αµ.

We are now going to write the above expression in a locally inertial coordinate
system, i.e. a coordinate system centered at a point and defined by the condition
that at the point the connection symbols vanish. In this coordinate system
(where we are going to denote tensor components with a “̂ ”) at the point x we
thus have Γ̂µ

αβ ≡ 0, although, of course in general ∂̂ν Γ̂µ
αβ 6= 0. In this coordinate

system the expression of the Ricci tensor evidently simplifies and becomes

R̂µν = ∂̂αΓ̂α
νµ − ∂̂ν Γ̂α

αµ.

We are now going to perform the variation in this coordinates system and return
to the previous one at the end. In particular we remember that, although the
connection symbols are not a tensor, differences between a connection symbols
are a tensor. In general the variation of the connection symbols is a difference
between two of them, so δΓµ

αβ are the components of a tensor. Thus when we
write

δR̂µν = δ(∂̂αΓ̂α
νµ)− δ(∂̂ν Γ̂α

αµ)

= ∂̂α(δΓ̂α
νµ)− ∂̂ν(δΓ̂α

αµ)

= (δΓ̂α
νµ)̂,α − (δΓ̂α

αµ)̂,ν

= (δΓ̂α
νµ)̂;α − (δΓ̂α

αµ)̂;ν ,

all quantities appearing on the above are tensors. As a tensor equation the
result is valid in any coordinate system, not only in the locally inertial one that
we have chosen, so that in full generality we can write

δRµν = (δΓα
νµ);α − (δΓα

αµ);ν . (18.3)

Let us look now at the combination gµνδRµν :

gµνδRµν = gµν(δΓα
νµ);α − gµν(δΓα

αµ);ν
= (gµνδΓα

νµ);α − (gµνδΓα
αµ);ν

= (gµνδΓα
νµ);α − (gµαδΓν

νµ);α
= (gµνδΓα

νµ);α − (gµαδΓν
νµ);α

=
(
gµνδΓα

νµ − gµαδΓν
νµ

)
;α

= Kα
;α,
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where we set
Kα =

(
gµνδΓα

νµ − gµαδΓν
νµ

)
.

We thus have dealt with the first and last term. The second one is already in a
convenient form and we can put results (18.2)2 and (18.3) into (18.1) to obtain:

δSG[g] =
∫

M

d4x

[√
−ggµνδRµν +

√
−g(δgµν)Rµν − (−g)gµν

2
√
−g

gαβRαβδg
µν

]
=

∫
M

d4x

[√
−gKα

;α +
√
−g
(
Rµν −

1
2
gµνR

)
δgµν

]
=

∫
M

d4x
√
−gKα

;α +
∫

M

d4x
√
−g
(
Rµν −

1
2
gµνR

)
δgµν

=
∫

∂M

dV (3)KαdΣα +
∫

M

d4x
√
−g
(
Rµν −

1
2
gµνR

)
δgµν . (18.4)

Let us consider the first term. It is computed on the boundary ∂M , where field
variations (and their derivatives), are chosen to vanish (in a way similar to what
we saw in lecture 3, when deriving the Euler-Lagrange equations (3.2)). Thus
only the second term remains and the stationarity of the action

δSG[g] = 0

for all variations δgµν implies the equations of motions for the fields gµν(x).
These are

Rµν −
1
2
gµνR = 0

or equivalently
Gµν = 0.

These are Einstein equations in vacuo. SinceGµν is symmetric they are a system
of 10 non-linear partial differential equations of the second order for the 10 fields
gµν(x).

2Remembering that

δ
√
−g =

1

2
√
−g

δ(−g).

c©2004 by Stefano Ansoldi — Please, read statement on cover page




