Chapter 14

Lecture 14

14.1 More about curves on manifolds - 1 -

In what follows, whenever we will speak of a manifold we will implicitly consider
a connection on it, whenever necessary.

14.1.1 Autoparallel curves and the exponential map

Definition 14.1 (Autoparallel)
Let o be a curve on a manifold (A ,F) such that the vector field &(t) tangent
to the curve is parallel along the curve, i.e.

D& (t)

=0.
dt

Then o is an autoparallel curve on .# . Please, see appendiz A for a note about
this definition.

Proposition 14.1 (Autoparallelism equation)
Let o be a curve on (A, F) and let (U, ¢) € F be a chart of A with coordinate

functions (x1,...,%m). 0 is an autoparallel curve if and only if
b D dri(t) dad (t)
s =0, k=1,... 14.1
dt? +2]: YT dr e ’ et (14.1)

where ¢ o o(t) = (xi(t),...,x™(t)).

Proof:

In the given coordinates the tangent vector & has components:

(dxl(t) d:cm(t)) _

dat 77 dt

But, by the definition above, ¢ is an autoparallel curve if and only if
this tangent vector is a parallel vector field along o and this is true if
and only if it satisfies the m differential equations (11.1) of proposition
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Figure 14.1: Exponential of a vector.

11.1, where now v' = dz'(t)/dt. Thus a curve o is an autoparallel curve
if and only if locally the m equations (14.1) are satisfied.
a

Definition 14.2 Let (#,F) be a manifold and let me A and v € My be a
point of M and a vector tangent to M at m respectively. The exponentiation
of v at m is the point p € A which is a unit parameter distance away along
the unique autoparallel curve o, passing at m at t = 0 and having at m tangent
vector v. The exponential of the vector v at m is thus defined as

expp(v) def. o»(1)

and is a map
expp: W C Mp — M,

where W is a neighborhood of O in M p.

If £ is a constant then of course we have

d
— kt) =k
] oo = e
so that

expy (kv) = 04 (k).
If we interpret k as a parameter we thus have that

def.
o(t) = expy(tv)

is the only autoparallel curve with ¢(0) = m and &(0) = v. It is defined for
small enough ¢, let us say —e < t < ¢, such that tv € W.

Proposition 14.2 The differential in O of the exponential map at m is an iso-
morphism of My, in particular

d(eXpm)-‘O = Latn-
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Proof:

To understand d(expy)], let us remember that according to its defini-
tion, the differential is a map between tangent spaces. In this case the
tangent spaces are:

1. the tangent space to the tangent space .#n at the origin 0,
which as usual we denote with (.#m),; since .#m is a vec-
tor space, we can up to an isomorphism use the following
identification

(M) =~ AMn;

2. the tangent space to .# at m, i.e. .#n.

Thus up to an isomorphism
d(expy)lq : Mn — An.

We are now interested in the action of d(expy)], on .#m. To grasp it
we can take a curve in .#n which has v as tangent vector, consider its
image under expy and look for the tangent vector of this image (which
is a curve on .#).

As a curve in .#pn with tangent vector v at the origin 0 we can choose
the line I(t) = tv, —e < t < +e¢, for some small enough € > 0. Of course

%hz(t) = .

The exponential then maps this curve into the unique autoparallel curve
~(t) = expp(tv) passing through m with tangent vector

%L”“) o,

since expp is defined exactly in this way. Thus

diexoally (55| 10) = G| 20 = dlexmaly ) =v
and this holds Vv € ./, i.e.

d(expy)]o = Lag-

O

From the above results and the implicit function theorem we conclude that the
exponential map is a local diffeomorphism around 0 € .y, onto a neighborhood
U C # of m. It maps lines in the tangent space to autoparallel curves of .4
passing through m and having tangent vector at m which is the director vector
of the line.
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