
Chapter 14

Lecture 14

14.1 More about curves on manifolds - 1 -

In what follows, whenever we will speak of a manifold we will implicitly consider
a connection on it, whenever necessary.

14.1.1 Autoparallel curves and the exponential map

Definition 14.1 (Autoparallel)
Let σ be a curve on a manifold (M ,F) such that the vector field σ̇(t) tangent
to the curve is parallel along the curve, i.e.

Dσ̇(t)
dt

= 0.

Then σ is an autoparallel curve on M . Please, see appendix A for a note about
this definition.

Proposition 14.1 (Autoparallelism equation)
Let σ be a curve on (M ,F) and let (U, φ) ∈ F be a chart of M with coordinate
functions (x1, . . . , xm). σ is an autoparallel curve if and only if

d2xk

dt2
+

1,m∑
i,j

Γk
ij

dxi(t)
dt

dxj(t)
dt

= 0, k = 1, . . . ,m (14.1)

where φ ◦ σ(t) = (x1(t), . . . , xm(t)).

Proof:

In the given coordinates the tangent vector σ̇ has components:(
dx1(t)

dt
, . . . ,

dxm(t)

dt

)
.

But, by the definition above, σ is an autoparallel curve if and only if

this tangent vector is a parallel vector field along σ and this is true if

and only if it satisfies the m differential equations (11.1) of proposition
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Figure 14.1: Exponential of a vector.

11.1, where now vl = dxl(t)/dt. Thus a curve σ is an autoparallel curve

if and only if locally the m equations (14.1) are satisfied.

�

Definition 14.2 Let (M ,F) be a manifold and let m ∈ M and v ∈ Mm be a
point of M and a vector tangent to M at m respectively. The exponentiation
of v at m is the point p ∈ M which is a unit parameter distance away along
the unique autoparallel curve σv passing at m at t = 0 and having at m tangent
vector v. The exponential of the vector v at m is thus defined as

expm(v) def.= σv(1)

and is a map
expm : W ⊂ Mm −→ M ,

where W is a neighborhood of 0 in Mm.

If k is a constant then of course we have

d

dt

⌉
t=0

σv(kt) = kv

so that
expm(kv) = σv(k).

If we interpret k as a parameter we thus have that

σv(t) def.= expm(tv)

is the only autoparallel curve with σ(0) = m and σ̇(0) = v. It is defined for
small enough t, let us say −ε < t < ε, such that tv ∈W .

Proposition 14.2 The differential in 0 of the exponential map at m is an iso-
morphism of Mm, in particular

d(expm)e0 = IMm .
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Proof:

To understand d(expm)e0 let us remember that according to its defini-
tion, the differential is a map between tangent spaces. In this case the
tangent spaces are:

1. the tangent space to the tangent space Mm at the origin 0,
which as usual we denote with (Mm)0; since Mm is a vec-
tor space, we can up to an isomorphism use the following
identification

(Mm)0 ≈Mm;

2. the tangent space to M at m, i.e. Mm.

Thus up to an isomorphism

d(expm)e0 : Mm −→Mm.

We are now interested in the action of d(expm)e0 on Mm. To grasp it
we can take a curve in Mm which has v as tangent vector, consider its
image under expm and look for the tangent vector of this image (which
is a curve on M ).
As a curve in Mm with tangent vector v at the origin 0 we can choose
the line l(t) = tv, −ε < t < +ε, for some small enough ε > 0. Of course

d

dt

⌉
0

l(t) = v.

The exponential then maps this curve into the unique autoparallel curve
γ(t) = expm(tv) passing through m with tangent vector

d

dt

⌉
0

γ(t) = v,

since expm is defined exactly in this way. Thus

d(expm)e0

(
d

dt

⌉
0

l(t)

)
=

d

dt

⌉
0

γ(t) ⇒ d(expm)e0 (v) = v

and this holds ∀v ∈Mm, i.e.

d(expm)e0 = IMm .

�

From the above results and the implicit function theorem we conclude that the
exponential map is a local diffeomorphism around 0 ∈ Mm onto a neighborhood
U ⊂ M of m. It maps lines in the tangent space to autoparallel curves of M
passing through m and having tangent vector at m which is the director vector
of the line.
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