Chapter 10

Lecture 10

10.1 Connections on manifolds - 2 -

10.1.1 Characterization of symmetric connections

Proposition 10.1 (Characterization of symmetric connections)

Let D (—,—) be a connection on a manifold 4 ,F and (U,$) € F a chart of
M with coordinate functions (z* , ... , ™). The following conditions are
equivalent:

1. D(—,—) is symmetric;
2. D (g5 55) = D (505 500):

k. _1Tk
3. T =Tk,

Proof:

1 = 2 Let us consider a symmetric connection. In a coordinate
basis of .#n, as is the one induced by the given chart, the
Lie Brackets of two arbitrary basis vectors vanish, i.e.

0 0
{@’@]—0
0 0 0 0
D(@’%)_D(%’@)_O

0 0 0 0

O

Thus

or

2 = 3 If we express

a 0 g 0
D(%%) J(%%)

61



[10.1].62 Lecture 10

in terms of the connection symbols, the above equality be-

comes
1,m

3 (Ffj - r§i> a%k —0.

k

But, since {a/amk}kﬂ,wm is a basis of .#n at each point
me U C A, the 8/83@’c are linearly independent, i.e.

k k k k

d

3 = 1 We consider to arbitrary vector fields V' and W and write
them in a coordinate basis associated to a given chart (U, ¢)

with coordinate functions (z1, ..., Tm):
1,m
: 0
1,m 8
w = XJ: i (10.1)

We first compute
1,m ; a
DV, W) = ( axz ax)
0
o ZD( oz 8303)
0
- ZUD( amﬂ)

1,m

N[0 0 (0 0
T L Oxt OxJ Oxt’ OxJ

1,5
1,m . 1,m
8’[1] 0 Z F
= ’U w -
Y 0zt dxd i
2% W5,k

Then, by exchanging V and W we also obtain

1,m
D(W,V) Z 8x78x1+zr v 7
i,j i,k

so that

D(V,W)-D(W,V)=
712’:’” PRI I
N — Ox® OxJ OxJ Ox?

+z< o) o' 5o

0,5,k

= w9 ;O0ut 0
N ZJ { oz 0wi " O &ci] (10-2)
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since by the assumptions, Ffj = F?z We now compute
the commutator, remembering in the first step result 1. of
proposition 8.4:

1,m 8 1,m a
_ i Jj_Y
v.wl = {;”azi’zj:w 8:5]}
_ S [2 2],
> Oz’ OxI

1,m 1,m

Zaw] 0 ja’Ui 0
+;v ozt OxI —Zw Oz Oxt

p

1,m . .
X Ow’ 9 0u 0
o Z [U ozt 91 " Oai BM} (10.3)

The first term in the equation before the last vanishes since
we are in a coordinate basis and we thus see from (10.2)
and (10.3) that

D(WV,W)-D(W,V)=[V, W],
i.e. the connection is symmetric.

This completes the proof.
O

10.1.2 Smooth curves and covariant derivative along a
curve

Definition 10.1 (Smooth curve on a manifold)

Let us consider a manifold (A ,F). A smooth curve on .# is a differentiable

map
o:la,b] — A

such that o(t) € A . The tangent vector to the curve is denoted by &(t), which

is defined as
=i (4]).

Remember that the differential of o(¢) is a map
dO"lt : Rt 2R — Q%U(t),

which maps tangent vectors in R; into tangent vectors of .# ;). This helps us
in giving a precise characterization of the tangent vector &(t). Indeed let us
consider a coordinate neighborhood (U, ¢) on .#, where ¢ is associated to the
coordinates (z!,...,2™). We fix as usual the coordinate basis on the tangent
spaces of points in U. The components of the vector &(t) (which is a map from

C>=(A) into R) are

@)= (0 (5] )) @)= ] @oo= ] =920
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where o’ = 2% o ¢ is the i-th coordinate component of the map o defining the
curve. We can thus write

1,m 1 1,m .
. — do* 0 . x—~do'(t) 0
o (t) ; dr —‘t 89&—‘ o(t) —dt 8301—‘0(15)

In what follows we are also going to use the notation z*(t) in place of o*(t) for
the components of the curve.

Proposition 10.2 (Covariant derivative along a curve)

Let o(t) : [a,b] — A be a differentiable curve on a manifold (A ,F) with
connection D (—,—). Let V(t) be a differentiable vector field along o. There
exists one and only one map which associates to a vector field V' along o another
vector field DV /dt along o, the covariant derivative of V' along o, such that:

D(V+W) _DV  DW.

L dt dt dt ’
) D(fv) df DV
2. Vf :]a,b] — R we have 7 7dtv+fdt ;
3. if Y € V(M) is a vector field on M such that V(t) =Y (o(t)) then
DV )
e D(6(t),Y ), - (10.4)

Proof:

Let us choose a chart (U, ¢) € F on the manifold (., F) with coordinate
functions (z', ..., ™). and let us consider a curve o(t) = (z'(t), ..
z™(t)). We then have

1,m i
, " dzi(t) 8
(t) = Z dt ozt

To prove the existence we use property 3. as an ansatz, i.e. we
define

i8]

DV get. o
W = D(o-(t)7Y)o'(t>;
this is a good definition since the operation defined by the connection
is local, i.e. it depends only on the values of the vector fields at a given
point and thus it makes sense for each vector field which is defined at
that point. Moreover we have:
D(V +W) .
= D(6(1), V), +D(6(t), W),
DV n DW
T dt dt ’
so that 1. is satisfied. Then we have

PUYY — D), V)
= (@O)NV+ID(E(1), V),
O .
= 7t axi(f)+fD(o-(t)’V)o(t)

i

df DV
wV ta
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and 2. is also satisfied. 3., of course, holds by definition, so the only
property we still have to prove is uniqueness. To establish it we rewrite
DV /dt using the local expression above for ¢ (¢) and also writing locally
the vector field along o(t) as

Then from equation (10.4) we can obtain the following chain of equali-
ties:

pv  D(Xmvn0/0))

dt o dt ,
-3 (dvdt 21y 8/81: )
> IR <-<>ai>]

—~

1,m
- di(t) & i) & 9
= [ dt axJ”()D( dt 8xi’8xj>:|
d
oxt’ Oxd
dv* (1) +Z e 0
dt 8:Jck Jaxk

Z Tk dw )) %. (10.5)

We thus see that the covariant derivative along o(¢) is completely de-

Q
E

termined by the connection coefficients in a unique way, i.e., given the
connection, it is unique. This completes the proof.
O
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