
Chapter 8

Lecture 8

8.1 Some reminders of topology

We are going to recall here some basic definitions in topology that are well known
from other courses. This will give us the opportunity to set up the notation.
We start with the definition of

Definition 8.1 (Topology and open sets)
Let S be a set and T a collection of subsets of S such that:

1. S ∈ T and ∅ ∈ T ;

2. given n ∈ N, Ai ∈ T , i = 1, . . . , n ⇒
⋂1,n

i Ai ∈ T ;

3. given a collection {An}n∈N, An ∈ T ∀n ∈ N ⇒
⋃

n∈N An ∈ T .

T is called a topology on S ; its elements are called open sets.

A topological space is then a space that has a topology:

Definition 8.2 (Topological space)
Let S be a set and T a topology on S . The couple (S , T ) is a topological
space.

In a topological space we can intuitively define the concept of beeing close to a
given point of the topological space. This motivates the following

Definition 8.3 (Neighborhood)
Let (S , T ) be a topological space and p ∈ S . A neighborhood of p is an open
set P ∈ T such that p ∈ P .

To characterize topological spaces and their property an important concept is
that of a collection of sets called cover:

Definition 8.4 (Cover)
Let S be a set and U = {Sα}α∈A a collection of subsets of S indexed by a set
A. U is called a cover of S if

⋃
α∈A Sα = S .

A subcover will be defined according to an intuitive idea as follows:
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Definition 8.5 (Subcover)
Let S be a set and U = {Sα}α∈A a cover of S . Let A′ ⊆ A. Then U ′ =
{Sα′}α′∈A′ such that

⋃
α′∈A′ Sα′ = S is a subcover of the cover U of S .

Of course, a subcover is itself a cover. A distinction between covers can be made
according to the following definitions.

Definition 8.6 (Refinement)
Let S be a set and U = {Sα}α∈A a cover of S . Another cover V = {S′β}β∈B
of S is called a refinement of U if ∀β ∈ B, ∃α ∈ A such that S′β ⊂ Sα.

Definition 8.7 (Open cover)
Let (S , T ) be a topological space and let O = {Oα}α∈A be a cover of S . O is
open cover of S if Sα ∈ T ∀α ∈ A.

Definition 8.8 (Locally finite open cover)
Let (S , T ) be a topological space and O = {Oα}α∈A an open cover of S . O is
a locally finite open cover of S if ∀s ∈ S there exists W , open neighborhood
of s, such that {Oi|Oi ∩W 6= ∅} is a finite set.

In terms of the above definitions help us in defining two special kinds of topo-
logical spaces.

Definition 8.9 (Compact topological space)
Let (S , T ) be a topological space. S is compact if every open cover of S
admits a finite subcover.

Definition 8.10 (Paracompact topological space)
Let (S , T ) be a topological space. S is paracompact if every open cover of S
admits a locally finite open refinement.

A third kind, that is at the heart of the concept of a differentiable manifold is
a space of the Hausdorff kind.

Definition 8.11 (Hausdorff topological space)
Let (S , T ) be a topological space. S is a Hausdorff space if ∀p, q ∈ S there
exist P and Q, open neighborhoods of p and q respectively, such that P ∩Q = ∅.

We are going to use some of the concepts in the last definitions shortly, when
dealing with partitions of unity. First we collect dome further results in differ-
ential geometry.

8.2 Some reminders of differential geometry

We are now going to apply the concept of tensor in the context of differentiable
manifolds, to define tensor fields. In mathematical physics tensor fields are our
variables, for the theory we develop, and play the same role of the scalar field
that we have heuristically introduced in the second lecture. By the way a scalar
field will be nothing but an (0, 0) tensor. In this lecture we will also set up the
notation for some already known concepts in differential geometry and topology.
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Figure 8.1: Typical example of a non-Hausdorff topological space.

8.2.1 Vector bundles and sections

We will recall in what follows the concept of vector bundle, before applying it
to the definition of tensor fields on manifolds.

Definition 8.12 (Vector bundle)
Let M and B be two manifolds, V a vector space and π : B −→ M a differential
map such that:

1. π is surjective;

2. ∀m ∈ M there exists U ⊂ M neighborhood of m such that π−1(U) is
isomorphic with U × V .

Then B is called a vector bundle over M .

M is called the base space, V is the fiber (see figure 8.2 for a schematic repre-
sentation).

Definition 8.13 (Section of a vector bundle)
Let B be a vector bundle over M . A map Σ : M −→ B such that

π ◦ Σ = IM

is called a section of B.

In figure 8.3 there is a graphical representation of a section.

8.2.2 Partition of unity

Definition 8.14 (Differentiable partition of unity)
Let (M ,F) be a manifold. A differentiable partition of unity is a couple (R,P)
where:

1. R is a locally finite open cover of M ;
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Figure 8.2: Vector bundle.

Figure 8.3: Section of a vector bundle.
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2. P is a collection of functions

P = {fV : M −→ R|V ∈ R, f differentiable} such that

(a) fV ≥ 0, ∀V ∈ R;

(b) supp (fV ) ⊂ V ;

(c)
∑

V ∈R fV = 1.

We see that the sum is finite because R is a locally finite open cover of M .
Thus ∀m ∈ M it is possible to find a neighborhood P which intersects only a
finite number of V ∈ R. In that neighborhood the sum is thus restricted only
to this finite number V ’s.

Proposition 8.1 (Existence of partition of unity)
Let (M ,F) be a paracompact differentiable manifold and let U be an open cover
of M . There exists a partition of unity (R,P) where R is a locally finite open
refinement of U .

We will say that the partition of unity (R,P) is subordinated to the cover U .
The paracompactness is required to obtain the open locally finite refinement R
starting from U .

8.3 Tensors - 3 -

8.3.1 Tensors (Tensor Fields) on Manifolds

As it has been proved in the course of differential geometry if we consider the
set T (M ) =

⋃
m∈M

Mm, it has a natural differentiable manifold structure. The

same is true for T r
s (M ) def.=

⋃
m∈M T r

s (Mm) where T r
s (Mm) is the vector space

of tensors of the type (r, s) on the vector space Mm, i.e. on the tangent space
of M in m. We give then the following definition.

Definition 8.15 (Tensor bundle of the (r, s) type)
Let (M ,F) be a manifold and

T r
s (M ) def.=

⋃
m∈M

T r
s (Mm).

T r
s (M ) together with the canonical projection

πr
s : T r

s (M ) −→ M

is the (r, s)-tensor bundle over M .

The tensor bundle is a vector bundle: its base space is the manifold M , its
fiber is the tensor product T r

s (Mm). The canonical projection in a given chart
(U, φ) is the map that associates to a point pT in the tensor bundle the point m
associated to the fiber to which the point pT belongs. In symbols, ∀pT ∈ T r

s (M )
then π(pT ) = m if pT ∈ T r

s (Mm). A natural way to define coordinates on the
tensor bundle is to associate to each point pT in the tensor bundle:
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1. the coordinates of the point m ∈ M associated to the fiber to which the
point pT belongs . . .

2. . . .and the components of the tensor associated to pT in T r
s (Mm).

This gives in a straightforward way an atlas of T r
s (M ). The concept of a tensor

at a point can be extended to that of a (smooth) tensor field over M .

Definition 8.16 (Smooth tensor field)
A smooth tensor field over M is a section of T r

s (M ). We will denote the space
of all tensor fields of the (r, s) type on M with T r

s (M ).

Some concepts already developed in the course of differential geometry are
special cases of the definitions above. In particular

Definition 8.17 (Tangent and Cotangent bundle)
The tangent and cotangent bundles over a manifold M are the tensor bundles
T 1

0 (M ) and T 0
1 (M ) respectively.

Definition 8.18 (Vector fields and 1-form fields)
A smooth vector field is a tensor field of the type (1, 0) and a smooth 1-form
field is a tensor field of the type (0, 1).

Moreover we set up the following additional notations:

Notation 8.1 (Particular cases of bundles and spaces of fields)
We will use the following notations:

T (M ) for the tangent bundle over M

T ∗(M ) for the cotangent bundle over M

V(M ) for the space of all vector fields over M

E(M ) for the space of all 1−form fields over M

For later convenience we also add at this point a definition outside our main
discussion:

Definition 8.19 (Line element field)
A line element field over M is is a section of the line bundle over M , i.e. it is
a smooth assignment of a couple (v,−v) with v ∈ Mm at all m ∈ M .

Differentiable tensor fields can be characterized in terms of some equivalent
properties according to the following proposition.

Proposition 8.2 (Characterization of smooth tensor fields)
Let T be a tensor field of the (r, s) type on an open subset W ⊂ M . The
following conditions are equivalent:

1. T is differentiable;

2. given a chart (U, φ) ∈ F with coordinate functions (x1, . . ., xm) if we
consider

T eU =
1,m∑

i1,...,ir
j1,...,js

T i1...ir
j1...js

∂

∂xi1
⊗ . . .⊗ ∂

∂xir
⊗ dxj1 ⊗ . . .⊗ dxjs ,

then T i1...ir
j1...js

: U ⊂ M −→ R are differentiable functions on U .
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To understand the notation in point 2. above, remember that at each point m
a coordinate basis of Mm is {∂/(∂xi)}i=1,...,m and the corresponding dual basis
in M ∗

m is {dxi}i=1,...,m. Then by generalizing proposition 7.2 we have that{
∂

∂xi1
⊗ . . .⊗ ∂

∂xir
⊗ dxj1 ⊗ . . .⊗ dxjs ,

∀(i1, . . . , ir) extracted from {1, . . . , n}

and∀(j1, . . . , js) extracted from {1, . . . , n}
}

is a basis of T r
s (M ). The functions T i1...ir

j1...js
are the components of T in the given

basis1. We are going to prove a particular version of the above proposition (with
an additional result) concerning vector fields. This proposition can be gener-
alized to tensor fields, where only the notation is slightly more cumbersome.

Proposition 8.3 (Characterization of smooth vector fields)
Let X be a vector field on an open subset W ⊂ M . The following properties
are equivalent:

1. X is differentiable;

2. given a chart (U, φ) ∈ F with coordinate functions (x1, . . . , xm) if we
consider

XeU =
1,m∑

i

Xi ∂

∂xi
,

then Xi : U ⊂ M −→ R are differentiable functions on U ;

3. if V ⊂ M is open and f ∈ C∞(V ), then X(f) ∈ C∞(V ), where we define

X(f)(m) def.= Xm(f),

i.e. Xm is the vector X(m).

Proof:

1⇒ 2 If X is differentiable then given a coordinate system (U, φ)
then XeU ,

XeU : U −→ T (M )

is differentiable. Moreover, since xi is a coordinate func-
tion, dxi ◦XeU is differentiable. But dxi ◦XeU = Xi on
U and the proof is complete.

1Often we are going to use the terminology in the given coordinate system or in the given
reference frame when we consider the coordinate basis for tangent and cotangent space as-
sociated to a given chart on the manifold. It is important to stress that non-coordinate
basis can be chosen as well!!! Not all results valid in coordinate basis for the components
of tensor are valid in non-coordinate basis!!!
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2⇒ 3 On an open set V let us consider f ∈ C∞(V ). Let (U, φ)
be a coordinate system on M . Then, denoting by π the
canonical projection of the tangent bundle,

X(f) =

1,m∑
i

Xi ∂f

∂xi

is such that the Xi are differentiable functions by hypoth-
esis and ∂f/∂xi is differentiable since f is C∞; thus X(f)
is also differentiable, as stated.

3⇒ 1 Let (U, φ) be a coordinate system on M chosen arbitrarily
and let us call (x1, . . . , xm) the coordinate functions on U .
Then

(x1(π(v)), . . . , xm(π(v)), dx1(v), . . . , dxm(v))

is a coordinate system on T (M ), i.e. it gives coordinates
for each v ∈Mm with m ∈ U . Thus the differentiability of
xi ◦ π ◦XeU = xi and of dxi ◦XeU = X(xi) (which is
implied by 3. with f = xi) yields the differentiability of
XeU .

The proof is thus complete.

�

On couples of vector fields there is an important application defined, the Lie
Brackets. In the following we give its definition as well as its properties.

Definition 8.20 (Lie Brackets)
Let us consider two vector fields X, Y ∈ V(M ). The map

[−,−] : V(M )× V(M ) −→ V(M )

which associates to X and Y the vector field [X,Y ] defined as

[X,Y ]m (f) def.= Xm(Y (f))− Y m(X(f))

where
[X,Y ]m = [X,Y ] (m) ∈ Mm.

We quickly comment about the well-definiteness of the above definition. In
particular we observe that [X,Y ] is a vector field, let us say Z. Thus it is a
section of the tangent bundle T (M ) and it associates to each m ∈ M a vector in
the tangent space Mm; we could denote this vector as Z(m), but we are going to
use the notation Zm, i.e. the notation [X,Y ]m, as explicitly said in the last line
of the above definition. With this notation we make explicit that [X,Y ]m ∈ Mm.
Thus [X,Y ]m, being a tangent vector, maps a (germ of) function(s) at m ∈ M
into R. To properly define its action we have to define the result of the operation
[X,Y ]m (f) in terms of the vector fields X and Y . To this end let us observe
again that if Y ∈ V(M ) then given f ∈ C∞(M ), then Y (f) ∈ C∞(M ). Thus
the tangent vector Xm transforms the (germ of) function(s) Y (f) into a real
number, Xm(Y (f)) ∈ R. The same is true if we exchange the roles of X and Y ,
which shows that the definition given above is consistent. With the following
proposition we are going to add some details to the definition.
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Proposition 8.4 (Properties of the Lie Brackets)
The Lie brackets have the following properties:

1. ∀f, g ∈ C∞(M ) we have

[fX, gY ] = fg [X,Y ] + fX(g)Y − gY (f)X;

2. it is antisymmetric, i.e. [X,Y ] = − [Y ,X];

3. it satisfies the Jacobi identity, i.e.

[[X,Y ] ,Z] + [[Y ,Z] ,X] + [[Z,X] ,Y ] = 0.

We will comment property 1. just to make explicit that it is a well defined
expression. In particular we observe that a function f ∈ C∞(M ) times a
vector field X is again a vector field. Thus the left-hand side in 1. is properly
defined. On the right-hand side we quickly discuss the second term. With
f, g ∈ C∞(M ), since X(g) ∈ C∞(M ), then the product fX(g) ∈ C∞(M ).
Thus fX(g)Y ∈ V(M ); the same is then true for the third term and a fortiori
for the first one, so the expression in 1. is meaningful.
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