Chapter 7

Lecture 7

7.1 Tensors - 2 -

7.1.1 Additional properties of tensor product

Proposition 7.1 (Distributive properties of ® with respect to @)

Given vector spaces U, V, U;, V;, i =1,...,k, the following properties hold:
(U1®...0U0)0V = U1Ve..eU,V
UeaWVio..oV) = UVie...aUeW, (7.1)

where + is the direct sum of vector spaces.

Proposition 7.2 (Basis of tensor product)
Let {v;}i=1,....m be a basis of V and {w;};j=1,. n be a basis of W. Then {v; ®
Wjtiz1.m 18 basis U @ V. In particular dim (U ® V') = dim (U) dim (V).

j=1,...,n

yeeey

Proof:

Let U; be the subspace of U spanned by u; and V; the subspace of V
spanned by v;. By proposition (7.1)

At the same time by proposition 6.3 U; ® V; is a one dimensional vector

space spanned by u; ® v;. This completes the proof.
O

Proposition 7.3 (Tensor product and linear applications)
Let
LU V)={l:U" — V,l linear}.

There exists only one isomorphism,

g: UV — L(U*V)
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such that
(9(u,v))(u") = u*(u)v.
Proof:

Let us define a bilinear function f,
f:UxV — LU V) |
such that’
(flu, )W) =v"(w)v , YuelU , V" €eU" , YweV
(remember that u*(u) € F). By proposition 6.1 there exists only one g,
g:U®V — L(U",V)

such that, when acting on v ® v, it gives the same result that f gives
when acting on the couple (u,v). This means there exists only one g
such that

(9(u®v))(u") = u (u)v
Let us now fix some basis, {u;}i=1,..m in U, {u]}i=1,...,m in U" and
{vi}i=1,...n in V. Then {g(u; ® vj)}i=1,....m is a linearly independent
i=1,."n

set in L(U*,V). To show this consider a linear combination of these
elements

j=1l,n
aijg(u; ®v;) with  (a;; €F, Vi=1,...,m, Vj=1,...,n),

i=1m

such that

i=1,m
Then we have that
j=1ln 1,n
Vk=1,...m, Cquj_Q(Ui@'Uj)(uz):Zak]"Uj =0,
i=1m J

which, since the {v;}i=1,...,n are linearly independent, implies
ar; =0 Vk=1,...,m, Vi=1,...,n

Since the dimensions of U ® V and of L(U*,V) are the same?, it follows
that g is an isomorphism and for the definition of the universal mapping
property it is also unique.

O

Without proof we also give the additional result:

IRemember that u* € U* is an application from U into F. Thus u*(u) € F. Moreover f
is a function from U X V into L(U*,V). Thus f(u,v) is a linear map from U* into V, i.e.
(Flu,0))(u*) € V.

2Remember proposition 7.2 and that from the linear algebra course dim (L(U*,V)) =
dim (U*) dim (V) = dim (U) dim (V).
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Proposition 7.4 (Tensor product and duals)
Given vector spaces U and V' there exists only one isomorphism g

g: UV — (U V)"
such that
(glu* @ v"))(u®v) =u"(v)v*(v), YueUVu* €U VYveV,Vv*e V",

This result can be generalized to r-fold tensor products.

7.1.2 Isomorphism with multilinear transformations
Notation 7.1 We set up the following notation:

T 1 s

1
Vsn%t'V*x...xV*xVx...xV.

r

Moreover we set
S

n . 1
VIRV Y XXV

and
T

1
not.
V,"E V=V x VR

Concerning tensor spaces we set

and
not. 1 r
T,(V) =SV'®...eV".
Then .
T (V)™= T (V)@ Ty(V)
with

T) =TF.

Proposition 7.5 (Tensor product and linear mappings)

T,(V) is isomorphic to the space of s-linear mappings from V* into F.
T7(V) is isomorphic to the space of r-linear mappings from V,. into F.
Tr(V) is isomorphic to the space of (r, s)-linear mappings from V.* into F.

Proof:

We prove only the first result using the s-fold generalization of propo-

sition 7.4. We then see that T,(V) is the dual vector space of T°(V).

But from the universal factorization property generalized to the s-fold

tensor product, the dual vector space of 7(V'), which is the linear space

of mappings of 7°(V) into F, is isomorphic to the space of s-linear map-

pings of V* into F. Analogous proofs can be given in the other cases.
O
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7.1.3 Tensors and components

According to the above proposition we can intuitively think a tensor in T7 (V)
as a multilinear map from V,® into F, i.e. as a black-box that eats r-vectors of
V and s covectors of V* to produce an element of F. We will stick with this
representation of a tensor T' in 77 (V') as a multilinear map in what follows. In
this sense, given {v;},=1.. , in V and given {v;};=1,. s in V*, we are going to
represent the action of T" on these sets of vectors and covectors as

T(vi,...,vs,01,...,0.) €F.

Let us now fix {e;}i=1,..m a basis in V and let {Ei}i:17,,,,m be the corre-
sponding dual basis in V*. We know from the above results (properly general-
ized) that

(e, ®..®e, @E"®...0 B,
V(i1,...,is)extracted from {1,...,n}

andV(j1,...,Jr) extracted from{1,... ,n}}

is a basis of T7 (V). A generic element T € T7 (V') will be written as

Z T e, ®..0e @E'®...0 E"

in the above basis. According to our interpretation of tensors as multilinear
functions, given some vectors «{'z:(’)]»i:17_”7S in V and some covectors {n(l)}i:l,..,,r
in V* we have that

T(n(1)7"'an(r)yv(l)w":'v(S)) el (72)

Of course we have

1,n
nD =3y B
kj

and
1,n
,U(J):E U(J)hjehi'
hj
Thus
1,n T1yeels J1yees]s
01...% J 1 T 1 s

STt @ ene @ B | @, g e, o) =
P1aeenrin I, Jp
Tl Js

1,n [ /i1, bs J1ysds
o Q1.0 a Jp b
= > T || I enm™) < T B (")

LSS in L I, Jy

G1seees is

1n (41,00 1n J1seesdis Ln
_ Q1. (a) gnk; Ty (b) hyj
= > T | 1L en (Doml B | x [ B | Y v®"e,
i1in I, k; Jp h;

MEREEEN Js -
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1,n i
- 3w | T (Sence)

I(l

Jiseensds
X H E v BT ( (en,)
Jy

1n [41,0sis /1m0 J1sengs [ Lin
i1...4, (a) ck; (b)hj sTb
> Tl | 11 (ani 51;>x | I DR
h;

D] 5eens ’i./yv L Ia ki Jb

J1s--sJs
i1...04 (a) b) J,
G1eedr H N, H o® b]
Jy

I
M
=3

()WL ()i

I
\gi
=3

The above expression is the result (7.2) expressed through the components in
a given basis. In the same way as 771(_) and v(7)7 are the components of the
covector n(—) and of the vector v(7)| respectively, we are going to call T;lljlr
the components of the tensor T'. In the final expression above the indices i,

., is and j1, ..., jr are said to be saturated by the vectors v(~) and covectors
1n(—) respectively. The final result above is thus a scalar, i.e. an element of F.
If not all the indices in the components of a tensor are saturated by vectors or
covectors, we get the components of an object which is again a tensor, although
of a different kind.

7.2 Synopsis

In the two previous lectures we have defined the tensor product of vector spaces
and given the most important properties: we have seen as the universal fac-
torization property is a key one for all subsequent derivations: it gives us the
possibility of transferring properties of multilinear maps on the cartesian prod-
uct of vector spaces into properties of tensors and maps on tensors. In what
follows we are going to be mainly interested in the (r, s)-fold tensor product of
a fixed given vector space V, i.e. on the (r-fold tensor product of V) ® (the
s-fold tensor product of V*). We have seen that in this case a tensor T € T7 (V)
can be thought as a multilinear map from V;? into IF. In this situation we have
given a meaning to the concept of tensor components when a preferred basis of
V is chosen and we have shortly seen the connection of components and tensor
calculus.
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